UIA 37th Annual Symposium, April 2008

Intraoperative differentiation of normal and edematous brain tissue from meningioma by quantitative sonography

K.-V. Jenderka, M. Strowitzki, S. Brand

PTB, Department 1.6 – Sound, Braunschweig, Germany

Department of Neurosurgery, Saarland University Medical School, Homburg-Saar, Germany

Orthopedic Department, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany

Topics

- Motivation
- Data acquisition
- Parameter extraction
- Results
- Conclusions and Summary

Goals of intraoperative ultrasonography in neurosurgery:

- Iocalization
- resection control
- navigation of burr hole procedures and endoscopes, neuronavigation
- neurovascular examinations
- quantitative sonography and parametric imaging

Interpretation of sonographic images

courtesy of A. Jödicke, Neuro-surgical Clinic, Justus-Liebig-University, Giessen, Germany

Parametric imaging

Conventional B-mode – contrast depends on echo amplitude

- morphology
- biometry (distance, area, volume, angle)
- qualitative access of texture

Parametric image –

contrast generated by tissue specific parameters

- tissue state and function
- quantitative data
- morphology

Parametric imaging: tissue specific parameters

texture	parameters:
---------	-------------

1st order statistics

(gray value histogram characteristics): mean, standard deviation, skew, curvature, ...

2nd order statistics

(relation of pixels to the neighborhood):

co-occurrence-parameter, image patterns, fractal dimension, ...

spectral parameters:

- attenuation
- backscatter
- IBC
- IOA

Data acquisition

Overview: Ultrasound-Echo-Data video-data rf-data raw-data $(r-\theta \text{ format})$ (r-θ format) (x-y format) postbeam prescan processing converter processing former \bigcirc transducer screen KVJ @ UIA'08

B-mode image (reconstructed from rf data)

phantom

brain tissue

Ultrasound – Tissue interaction

Main effects dependent on frequency:

Intensity loss due to relaxation processes (macro-) molecular level

Size: specular ka(↓) Rayleigh Shape: isotropic quasi-cylindrical quasi-planar Distribution: scatterer density regular non-regular

attenuation $\alpha(f) = \alpha_a(f) + \alpha_s(f)$

Model of the signal path

Soundfield correction

Estimation of sound field correction functions

- calculation (spatial impulse response Field II)
- hydrophone
- plane reflector
- thin wire or point reflector
- tissue mimicking phantom
- normal tissue

Principle of parameter estimation

Multi narrow band method

Backscatter coefficient

Frequency dependent attenuation

Frequency dependent attenuation

Attenuation at 5 MHz

Relative backscatter coefficient (5 MHz)

Power spectral density (5 MHz)

Integrated attenuation coefficient

Slope of attenuation

Relative integrated backscatter coefficient

Conclusions

Significant differences for all attenuation parameters (e.g. attenuation at 5.0 MHz normal brain vs. edema: P = .00002 normal brain vs. meningioma: P = .000004 edema vs. meningioma: P = .002

Backscatter parameters allow significant differentiation between:

- edema and meningioma

(at low frequencies and at the probe's center frequency)

- normal brain tissue and meningioma

(at low frequencies)

Normal brain is not significantly distinguishable from edema by backscatter parameters

analysis of additional tumor types

analysis of tumors with infiltrating character

- Meningioma was used as a basic model due to its clearly definable margins
- Spectral analysis of intraoperatively acquired rf-data was able to significantly differentiate among normal brain, edematous tissue, and meningioma
- This could form the basis for intraoperative tissue characterization, thus allowing a more precise definition of tumor borders and improve attempts of radical resection