Measurement of the properties of
materials

useful in the design
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1. Density, p = mass/unit volume

2. Young’s modulus, E = stress/unit
strain

3. Poisson’s constant, ;= -transverse
strain/imposed axial strain

4. Q = 27*(energy stored/energy lost) per
cycle of vibration

5. Maximum cyclic operating stress, o,



Density

Density given by foundry is usually accurate. Density
given by mill certification should be checked.

Density of an irregular blank not having uniform
dimensions can be found by buoyancy measurements.

Measure the specimen’s weight, W;. in grams.

Then fill a container with enough water to permit
complete suspended submersion of specimen.

Weigh the container filled with watr.

Suspend the specimen by thread whose weight is
neglible compared to the specimen in the container so
that is completely submerged.
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o Difference in weight measured before and after
submersion, dw, = weight of volume of water
displaced from which the volume of the specimen, V;,
can be found in cubic centimeters, knowing that the
density of water is 1 gm/cc.. V; = 0w, cc when dw is
measured in grams.

e The density of the specimen, p;, is then ps - W4/V,,
when W is given in grams.



Young’s modulus

Chiming Method

Reference: http://www.modalmechanics.com/UIA_1998 presentation.htm
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o A sample specimen of the material in bar formis
suspended by two threads, each postioned 0.224 of the
bar’s length, L, from its ends.

e The bar is struck at its center with a soft faced hammei
and the frequency of vibration is measured using
microphone connected to a frequency meter.

e The extension sound velocity, c, of the material can
be found from the equation relating the frequency of
the first free-free flexural mode to the bar’s

dimensions: C = gL* f /7[’((3-0112)2where fis

the measured frequency of vibration andx is the
radius of gyration of the bar cross section with respect
to the neutral axis of bending. For a round bar of
diameter d, k = d/4. For a rectangular bar of thickness

t in the bending plane, « =t//12.

e Knowing c and p, Young’s modulus, E, may be found
as E=pc’
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Steady state excitation method

For materials such as many thermoplastics, where elastic losses limit the d uration of
chiming and make frequency measurements difficult, steady state excitation of free -free
flexural resonance may be used to determine c.



e Bar is supported by knife-edges or thread at each node
of the first free-free flexural resonance.

e Frequency of signal generator is adjusted until signal
from microphone attains a peak value.

e Knowing f the extensional sound velocity, and thus E,
can be computed as previously described.



Fixed-Free flexural chiming method

Useful for measuring Young’s modulus for metal and
plastic sheet and film.
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e Specimen vane Is clamped between a bimorph and
vise jaws.

o Bimorph electrodes are attached to a frequency meter.
e Vane is deflected and released.

e Frequency of vibration, f, as read by frequency meter,
IS related to the extensional sound velocity as

Cc = 8L/ 7k (1.194)°
where x =t/ /12



Poisson’s constant

Foundries may not tabulate this constant in their listing of
material properties. However an accurate assessment of its
value is essential to the design of horn whose lateral
dimensions are comparable to their length.



Driven resonance method

The radial displacement at the surface of the center of the
specimen is p*extensional strain at the center of
specimen’s axis*the radus R.

For a slender uniform half wavelength cylinder, the
extensional strain at the axial center of the specimen is
equal to the extensional velocity at the center of the free
end divided by the extensional sound velocity, c.
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For results accurate to about two percent, machine
right round specimen blank, whose length is 5 or more
times its diameter, to resonate at the same frequency,
f, as the ultrasonic transducer+driving horn.

For specimens whose diameter approximately equals
their length, the computation of u given below is
accurate to within ten percent.

Drive blank at a measured extension displacement, e.

Measure radial displacement gr of the specimen
blank at L/2, the center of the blank length.

=) )

E E a)R where ¢ Is the extensional

sound velocity, and ®=2n f



FEA assisted measurement of Poisson’s
Constant

Reference:
http://www.modalmechanics.com/UIA_2002_presentation_Poisson&Young'
s.htm



Method takes advantage of the fact that flexural reonant
vibration is far less dependent upon Poisson’s constant than
Is torsional resonance. It also does not require a restriction
on the ratio of specimen length to lateral dimension or that
the specimen dimensions be adjusted to resonate with an
excitation source.

Flexural vibration frequency is proportional, in the first
approximation, to the square root of Young’s modulus.

Torsional vibration frequency, to the same approximation,
IS also dependent upon the square root of the modulus of
rigidity define as G = E/2(1+u).



Given a specimen blank that can be accurately modeled in
an FEA program, the blank is excited into free-free flexural
and then torsional free-free vibration as shown below and
the frequencies measured. Determination of the correct
mode frequency range can usually be determined from a
preliminary FEA modal analysis using nominal values for
E and p.
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e Using a nominal value for both E and p, the frequency
of the first free-free flexural resonance is computed
from FEA modal analysis.

e The value of E is then adjusted by multiplying the
initial value of E by the square of the ratio of
computed flexural resonant frequency measured to

that measured.
fc .,
E.=( " )E
¢ ¢ (fm)

e where f, and f,,are the computed and actual measured
flexural resonant frequencies.



e The value E;is then assigned to the material and a
second modal analysis performed, resulting in a
flexural resonance close to that measured and also
resulting in a new computed torsional frequency, fe.

e The value of u is then adjusted by multiplying the
quantity (1+u) by the square of ratio of measured to
computed frequency and subtracting 1 from this
result:

f
= W+ () -1
ft2

e where f,, and fy, are the measured and computed
torsional frequencies. Note that frequency ratio is, for
this correction to p, the inverse of that for E as the
square of the torsional frequency is inversely
proportional to Poisson’s constant.



e Modal analysis is again performed, resulting in new
computed flexural and torsional resonant frequencies.
Again the value of E is adjusted to E; by multiplying
the value of E, by the square of the ratio of the
measured to the computed frequency.

e Modal analysis is again performed to adjust u as
described above.

e The iterations continue until the desired level of
agreement between the measured flexural and
torsional resonances with the computed values is
achieved. Typically, three iterations are required to
achieve an accuracy of better than 99 percent.



Q and Cyclic Fatigue

Reference: http://www.modalmechanics.com/UIA 1998 presentation.htm




The mechanical Q of a horn determines its power
consumption at any given level of vibration and thus its
temperature rise and, ultimately, its ability of withstand
vibration without failure as fatigue strengthvaries inversely
with temperature.

For low levels of cyclic stress, chiming, previously
described in the measurement of E, affords a simple
method of measurement.

From measurement of the decay of vibration amplitude or,
as It sometimes termed, ring-down, as recorded on an
oscilloscope depicting the microphone signal, Q can be
rapidly determined as shown below for Macor ceramic bar
chime.
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The Q can be found by remembering that the Q is defined
as 2 times the ratio of total vibrational energy to the
energy lost per cycle and that vibration energy is
proportional to the square of the amplitude, it can be
shown, since the rate at which energy is lost per cycle is
proportional to the total energy of vibration at any time,
that the amplitude, &, at any point on a resonator initially
excited into resonant vibration, and then allowed to freely
decay, must diminish exponentially:

&/ it

%% ‘eXp(‘ Q )

where f is the frequency, t is the time of the observation and
&, IS the initial amplitude.



If amplitudes &; and &, are measured at times t; and t,,
from the above equation,

afAt
R In(é1 52)

wheret; -t, = At.

Measuring the amplitude of the decay, &, , at time t; and

then again &; at time t,, and knowing the frequencyf, the Q
may be computed. The table below gives the value of Q
measured using this method on a variety of materials.



Figure 1
Magnetically levitate d test chime

Material Condition Q
6Al-4V Titanium Lots, as received 2,000-6,000
6Al-4V Annealed 18,000-22,000
17-4PH Stainless Steel Annealed 7,000
PH15-7Mo Stainless Steel Annealed 17,000
PH15-7Mo Hardened 17,000
PH13-8Mo Stainless Steel Annealed 10,000
Custom 455 Stainless Steel H900 condition 10,000
MACOR™ As received 5,000

Chiming Q of VVarious Materials



However, caution is advised in using these values to predict
operation at large strains as only in 6AF4V is the Q
invariant with cyclic strain until a level of about 25 percent
Is reached. Other metals, particularly the 300 series
stainless steels and precipitation hardened stainless steels,
such as 17-4 PH, exhibit a declining value of Q with
increased cyclic strain.

Other researchers have reported values of Q at various
strains for a variety of materials, as shown below.



Figure 1
Measured room temperature Quality factors for selected materials

Material Q Notes

90Ti-6Al-4V Titanium alloy 20,000  Annealed. Strain< 0.003, 17 kHz

Low carbon steel 250 Annealed, Strain <0.0001, 23 kHz
Lead 500 Commercially pure,Strain < 0.00025
Aluminum 10,000
Magnesium 5700
Tungsten carbide steel 8180
Bakelite 200 Strain < .0024, 17.6 kHz
Polycarbonate (unreinforced) 100 Strain 0.005, 20kHz

Unfilled polypropylene 100 Strain 0.005, 20 kHz




Measurement of Q at large strains by
power consumption

At appreciable strains, the Q may be measured by
machining a wavelength rod of the material resonan at the
frequency of the driving transducer+horn and measuring
the electrical power, P;, consumed by the transducer when
driving this rod. The rod is then shortened by a half

wavelength and the power consumed in driving the rod, P,
IS measured.



The energy stored in a half wavelength prismatic rod is
equal to one quarter of the mass of the rod, M, multiplied
by the free end velocity, V, squared:

E=m(V,)*/4
The energy consumed per cycle of vibration, E, is the
power consumption measured divided by the frequency of

vibration:

Eq=P/f



The difference P;-P, is the power consumed by a half
wavelength of the material, hence:

Q=2r[energy stored per cycle/energy lost per cycle] =
1 [M(Vo)*fl/[2(P1-P2)],

where V,=2xf¢ , € being the observed free end
displacement of the rod which is kept the same for both P,
and P, measurements.

This method takes into account any losses produced the
coupling of the rod to the driving horn, but it does not take
into account the energy conversion efficiency of the
transducer. Typically a piezo-electric transducer’s
efficiency is in the range of 95 percent. Measurements
using this technique are given by

http://www.modalmechanics.com/UIA 2002 presentation Q stainless steels.htm




If greater accuracy is desired, interested parties are referred

to a method for measuring Q that relies wholly upon the
temperature rise of a specimen that is given in

http://www.modalmechanics.com/Acoustic loss at substantial ultrasonic strain in 6Al
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm

The table below summarizes some of the results obtained
by thermal measurements.



sampl | Diame | Densit | Young | cyclic | cyclic Q comm
eD ter x y ’S strain | stress ents
length | kg/m® | Modul | percen | Mpa
mm us t (kpsi)
Gpa
Custo | 126 x| 7750 | 200 0.06 124 | 1800 | warm
m455 | 126 (18) at
center
0.09 250 | 1800 | hotat
(24) center
Aerom | 193 x| 7789 | 194 0.06 124 | 5900 | warm
et 100 | 123 (18) at
center
0..09 | 250 fractur
(24) ed
6Al- | 93x | 4429 | 110 0.06 70 2800
4v 127 (10)
Titani
um
(heat
treated
)
0.09 100 | 2800
(15)
0.12 140 | 2700 | warm
(20) at

center




FEA assisted prediction of expected horn
losses at specified operating levels.

The expected power loss in a horn can be estimated if the C
of the material is known for the maximum operating stress.

The method relies upon the definition of resonance as the
cyclic exchange of kinetic and potential energy. Kinetic
energy is equal to the sum of each mass element multiplied
by half its peak velocity squared. The potential energy,Ep,
Is equal to the half the sum of the stress in each mass
element squared divided by Young’s modulus and is equal
at resonance to the kinetic energy, Ex:

Ec =2 (miviz)/z = 0", (migiz)/z

where v=w¢, £ being the displacement of the mass element.



w° = 2E IZi(mié‘iz) =2E, /%, (migiz) , as, at
resonance Ex=Ep

Now suppose material is removed from the horn where
there is little motion but substantial stress, such as the
regions about a motional node. The potential energy thus is
decreased but, if the vibration amplitude is kept the same,
the sum Z;(m;&)/2 does not change. Then

a)lz = ZEpllZi(mifiz) =E, [Ek, /a)oz]

where the subscripts 1 and O denote respectively the new
resonant frequency resulting from the removal of material
and the original resonant frequency.



We then have
(a)lla)o)2 = EPllEKO = (EP0 —AEp)/ Evo :1—AEp/EK

Modal analysis provides both the resonant frequency, the
amplitude and stress distributions in the unaltered horn
permitting calculation of the potential energy in a small
amount of mass undergoing little displacement in
comparison to other parts of the hornand that is removed in
the altered horn. The analysis is then repeated with this
mass removed and a new resonant frequency computed.
Since then both and @y and @, as well as AK,, are known,
Exo can be found as:

Eqo = AE, /[1- (01 @,)°]



Having found the stored energy of vibration at a particular
level of stress, the power dissipation ,P, in the horn follows,

from the definition of Q, as
P = f(energy lost per cycle) = 2nfEx/Q.

In a like manner, if some mass is added or subtracted from
a horn where there is maximum motion and neglible stress,
the stored energy of vibration can be found computing the
Kinetic energy, AK,, of the mass removed from the modal
analysis results for the unaltered horn as:

Keo = AK, /[1 - (e, /0)1)2]_



Note that this analysis assumes that the Q is independent of
stress. Using the value of Q appropriate to the largest value
of stress in the horn will then provide an upper limit to

power consumption.



Maximum safe operating stresses
(strains) in ultrasonic horns.

Reference:
http://lwww.modalmechanics.com/Acoustic_loss_at_substantial_ultrasonic_strain_in_6A |
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm



It has generally been determined, from stress versus cycles
to failure data obtained from applying repetitive cyclic
stress to specimens, that indefinite life in vibration can be
obtained in metals by choosing the maximum operating
stress to be no more than one third of the yield stress for the
material. For example, the yield stress of 6AF4V titanium
Is about 120,000 psi (827 MPa). Indefinite horn life can be
achieved by ensuring that no part of the horn expeiiences
more than 40,000 psi (275 MPa).



It is possible to also design plastic horns, as has been
demonstrated by the technically, if not commercially,
successful development of the ultrasonic tooth brush. For a
material such as polycarbonate, the yield stress is about
9,000 psi (62 MPa). However, it has been found that above
a 20 kHz cyclic stress of about 400 psi (2.7 MPa), which
corresponds to a free end peak-peak displacement of a
simple half wavelength rod of 0.6 mils (15 ), failure
occurs due to softening of the material caused by the
elevation in temperature from cyclic stress loss. The Q of
polycarbonate has been measured to be about 70!
Nevertheless, its tested use as low frequency resonators,
such as those operating in 50-150 Hz region where the
power loss is reduced by low frequency operation, has
shown that it may operate indefinitely providing the
maximum cyclic stress is kept below 2,000 psi (1.4 MPa).
The table below provides data on the low frequency cyclic
endurance of some common thermoplastics.



Thermoplastic film | Thickness Condition Density - Modulus Q

(inch) (Ibsf/in*3) (psi)
PC (polycarbonate) - 0.022 annealed 250F 1 hour  0.04 . 260,000 70
PVC (polyvinyichloride) 0.015 cut from packaging  0.048 460,000 55
PET (polyethylene terathylate) 0.012 cut from packaging 0.047 860,000 100
PS (polystyrene) | 0.013 cut from packaging 0.038 570,000 100
- Thermoplastic film Indefinite cyclic life fatique limit Notes
(psi)
PC (polycarbonate) 2,000 74 Hz, vane crack at 2300 psi
PVC (polyvinylchloride) 2,000 63 Hz, vane crack at 2500 psi
PET (polyethylene terathylate) >4 500 93 Hz, cyanoacrylate adhesive failure, vane intact
PS (polystyrene) 3,500 99 Hz, vane crack at 3750 psi '

Table 1



Effect of residual stress upon Q



Material for horns is commonly obtained in round rod or
billet form. Stress induced during rolling or rerolling or by
forging have been shown to substantially affect the Q and
thus running power consumption. For 6Al-4V Titanium,
chiming measurements of blanks and tests made upon
horns finished from blanks showed that tips operating at
40,000 psi (275 MPa) peak stress made from blanks having
a Q below about 7500 heated sufficiently to cause tensile
failure.



Residual stress may be removed by annealing material prior
to machining. In 6-4 Ti, annealing will, in general, restore
the Q to its established level of about 20,000. Annealing of
other Titanium alloys as well as the stainless steels is also
recommended to obtain optimum performance.

Heat treatment to increae the yield strength of
precipitation hardenable stainless steels does not produce
the expected increase in free face displacement as many of
these treatments, especially those for 157PH ,17-4 PH,
Aeromet 100 and Custom 455, lower the Q and cause
failure from an elevation in temperature during operation.
The Q for all steels measured decreases, in any case, with
strain. In designing stainless steel horns, it is best to
choose materials with the highest yield strength in the
annealed state and to disregard the higher strength available
from heat treatment.



Fini
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1. Density, p = mass/unit volume

2. Young’s modulus, E = stress/unit
strain

3. Poisson’s constant, 4 = -transverse
strain/imposed axial strain

4. Q = 27*(energy stored/energy lost) per
cycle of vibration

5. Maximum cyclic operating stress, o,



Density

e Density given by foundry is usually accurate. Density
given by mill certification should be checked.

e Density of an irregular blank not having uniform
dimensions can be found by buoyancy measurements.

1. Measure the specimen’s weight, W;. in grams.

2. Then fill a container with enough water to permit
complete suspended submersion of specimen.

3. Weigh the container filled with water.

4. Suspend the specimen by thread whose weight is
neglible compared to the specimen in the
container so that is completely submerged.



6. Difference in weight measured before and after
submersion, dw, = weight of volume of water
displaced from which the volume of the
specimen, Vs, can be found in cubic centimeters,
knowing that the density of water is 1 gm/cc.: V;
= dw, cc when dw is measured in grams.

7. The density of the specimen, ps, is then ps-
WV, when W Is given in grams.



Young’s modulus

Chiming Method

Reference: http://www.modalmechanics.com/UIA_1998 presentation.htm
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e A sample specimen of the material in bar form is
suspended by two threads, each postioned 0.224 of the
bar’s length, L, from its ends.

e The bar is struck at its center with a soft faced hammer

and the frequency of vibration is measured using

microphone connected to a frequency meter.



e The extension sound velocity, c, of the material can
be found from the equation relating the frequency of
the first free-free flexural mode to the bar’s

dimensions: C = 8L f /”K(B-Ollz)zwhere fis

the measured frequency of vibration and « is the
radius of gyration of the bar cross section with respect
to the neutral axis of bending. For a round bar of

diameter d, « = d/4. For a rectangular bar of thickness
t in the bending plane, x =t/+12.

e Knowing c and p, Young’s modulus, E, may be found
as E=pc?

Steady state excitation method

For materials such as many thermoplastics, where elastic
losses limit the duration of chiming and make frequency
measurements difficult, steady state excitation of free-free
flexural resonance may be used to determine c.
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e Bar is supported by knife-edges or thread at each node
of the first free-free flexural resonance.

e Frequency of signal generator is adjusted until signal
from microphone attains a peak value.

e Knowing f the extensional sound velocity, and thus E,
can be computed as previously described.



Fixed-Free flexural chiming method

Useful for measuring Young’s modulus for metal and
plastic sheet and film.

~—— Specimen vane

< —>

Freguency Meter

Bimorph

<—1— Clemping vise

1. Specimen vane is clamped between a bimorph and
vise jaws.

2. Bimorph electrodes are attached to a frequency meter.

3. Vane is deflected and released.



4. Frequency of vibration, f, as read by frequency meter,
Is related to the extensional sound velocity as

c =8fL°/ 7x(1.194)°
where x = t/4/12

Poisson’s constant

Foundries may not tabulate this constant in their listing of
material properties. However an accurate assessment of its
value is essential to the design of horn whose lateral
dimensions are comparable to their length.



Driven resonance method

The radial displacement at the surface of the center of the

specimen is u*extensional strain at the center of
specimen’s axis*the radius R.

For a slender uniform half wavelength cylinder, the
extensional strain at the axial center of the specimen is
equal to the extensional velocity at the center of the free
end divided by the extensional sound velocity, c.

to ultrasonic j\ driving horn
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1. For results accurate to about two percent, machine
right round specimen blank, whose length is 5 or more
times its diameter, to resonate at the same frequency,
f, as the ultrasonic transducer+driving horn.

For specimens whose diameter approximately equals

their length, the computation of u given below is
accurate to within ten percent.

2. Drive blank at a measured extension displacement, &e.

3. Measure radial displacement ,er of the specimen
blank at L/2, the center of the blank length.

E C
u=)(—) | |
4, EE @wR "~ where c is the extensional

sound velocity, and w=2nf

FEA assisted measurement of Poisson’s
Constant

Reference:
http://www.modalmechanics.com/UIA_2002_presentation_Poisson&Young'
s.htm



Method takes advantage of the fact that flexural resonant
vibration is far less dependent upon Poisson’s constant than
Is torsional resonance. It also does not require a restriction
on the ratio of specimen length to lateral dimension or that
the specimen dimensions be adjusted to resonate with an
excitation source.

Flexural vibration frequency is proportional, in the first
approximation, to the square root of Young’s modulus.

Torsional vibration frequency, to the same approximation,
Is also dependent upon the square root of the modulus of
rigidity define as G = E/2(1+p).

Given a specimen blank that can be accurately modeled in
an FEA program, the blank is excited into free-free flexural
and then torsional free-free vibration as shown below and
the frequencies measured. Determination of the correct
mode frequency range can usually be determined from a
preliminary FEA modal analysis using nominal values for
E and p.
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Measurement of torsional resonant frequency

e Using a nominal value for both E and p, the frequency
of the first free-free flexural resonance is computed
from FEA modal analysis.

e The value of E is then adjusted by multiplying the
initial value of E by the square of the ratio of
computed flexural resonant frequency measured to
that measured.

fc |,
E.=(—)°E
. 2(fm)

e where f. and f,,are the computed and actual measured
flexural resonant frequencies.



The value E, is then assigned to the material and a
second modal analysis performed, resulting in a
flexural resonance close to that measured and also
resulting in a new computed torsional frequency, fe.

The value of pu is then adjusted by multiplying the
quantity (1+u) by the square of ratio of measured to
computed frequency and subtracting 1 from this
result:

f
t, = 1+ p)(2)° -1
* fio

where f,, and f;, are the measured and computed
torsional frequencies. Note that frequency ratio is, for
this correction to u, the inverse of that for E as the
square of the torsional frequency is inversely
proportional to Poisson’s constant.

Modal analysis is again performed, resulting in new
computed flexural and torsional resonant frequencies.
Again the value of E is adjusted to E; by multiplying
the value of E; by the square of the ratio of the
measured to the computed frequency.

Modal analysis is again performed to adjust u as
described above.



e The iterations continue until the desired level of
agreement between the measured flexural and
torsional resonances with the computed values is
achieved. Typically, three iterations are required to
achieve an accuracy of better than 99 percent.

Q and Cyclic Fatigue

Reference: http://www.modalmechanics.com/UIA 1998 presentation.htm

The mechanical Q of a horn determines its power
consumption at any given level of vibration and thus its
temperature rise and, ultimately, its ability of withstand
vibration without failure as fatigue strength varies inversely
with temperature.

For low levels of cyclic stress, chiming, previously
described in the measurement of E, affords a simple
method of measurement.

From measurement of the decay of vibration amplitude or,
as it sometimes termed, ring-down, as recorded on an
oscilloscope depicting the microphone signal, Q can be
rapidly determined as shown below for Macor ceramic bar
chime.
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The Q can be found by remembering that the Q is defined
as 2m times the ratio of total vibrational energy to the
energy lost per cycle and that vibration energy is
proportional to the square of the amplitude, it can be
shown, since the rate at which energy is lost per cycle is
proportional to the total energy of vibration at any time,
that the amplitude, &, at any point on a resonator initially
excited into resonant vibration, and then allowed to freely
decay, must diminish exponentially:

=l 5

where f is the frequency, t is the time of the observation and




&, IS the initial amplitude.

If amplitudes &; and &, are measured at times t; and t,
from the above equation

7fAt

Q=
&
In 3

where t; - t, = At.

Measuring the amplitude of the decay, &, at time t; and
then again &, at time t,, and knowing the frequency f, the Q
may be computed. The table below gives the value of Q
measured using this method on a variety of materials.

Figure 1
Magnetically levitated test chime

Material Condition Q
6Al-4V Titanium Lots, as received 2,000-6,000
6Al-4V Annealed 18,000-22,000
17-4PH Stainless Steel Annealed 7,000
PH15-7Mo Stainless Steel Annealed 17,000
PH15-7Mo Hardened 17,000
PH13-8Mo Stainless Steel Annealed 10,000
Custom 455 Stainless Steel H900 condition 10,000
MACOR™ As received 5,000

Chiming Q of Various Materials

However, caution is advised in using these values to predict
operation at large strains as only in 6Al-4V is the Q



invariant with cyclic strain until a level of about .25 percent
Is reached. Other metals, particularly the 300 series
stainless steels and precipitation hardened stainless steels,
such as 17-4 PH, exhibit a declining value of Q with
increased cyclic strain.

Other researchers have reported values of Q at various
strains for a variety of materials, as shown below.



Figure 2
Measured room temperature Quality factors for selected materials

Material Q Notes

90Ti-6Al-4V Titanium alloy 20,000  Annealed. Strain < 0.003, 17 kHz

Low carbon steel 250 Annealed, Strain <0.0001, 23 kHz
Lead 500 Commercially pure,Strain < 0.00025
Aluminum 10,000
Magnesium 5700
Tungsten carbide steel 8180
Bakelite 200 Strain < .0024, 17.6 kHz
Polycarbonate (unreinforced) 100 Strain 0.005, 20kHz
Unfilled polypropylene 100 Strain 0.005, 20 kHz

Measurement of Q at large strains by
power consumption

At appreciable strains, the Q may be measured by
machining a wavelength rod of the material resonant at the
frequency of the driving transducer+horn and measuring
the electrical power, P,, consumed by the transducer when
driving this rod. The rod is then shortened by a half

wavelength and the power consumed in driving the rod, P,
IS measured.



The energy stored in a half wavelength prismatic rod is
equal to one quarter of the mass of the rod, M, multiplied
by the free end velocity, V, squared:

E=m(V,)*/4

The energy consumed per cycle of vibration, Ey, is the
power consumption measured divided by the frequency of
vibration:

Ed:P/f

The difference P;-P, is the power consumed by a half
wavelength of the material, hence:

Q=2n[energy stored per cycle/energy lost per cycle] =
1 [m(Vo) fl/[2(P1-P,)],

where V, = 2rf¢ , € being the observed free end
displacement of the rod which is kept the same for both P,
and P, measurements.

This method takes into account any losses produced the
coupling of the rod to the driving horn, but it does not take
into account the energy conversion efficiency of the
transducer. Typically a piezo-electric transducer’s
efficiency is in the range of 95 percent. Measurements
using this technigue are given by

http://www.modalmechanics.com/UIA 2002 presentation Q stainless steels.htm




If greater accuracy is desired, interested parties are referred
to a method for measuring Q that relies wholly upon the
temperature rise of a specimen that is given in

http://www.modalmechanics.com/Acoustic loss at substantial ultrasonic strain in 6Al

-6V-25n and sintered 6AIl-4V Titanium.htm

The table below summarizes some of the results obtained
by thermal measurements.

20 kHz Acoustic Loss of Heat Treated High Strength alloys

sampleD | Diameter | Density | Young’s | cyclic |cyclic| Q |comments
x length | kg/m® | Modulus | strain | stress
mm Gpa |percent| Mpa
(Kpsi)
Custom | 12.6 x 7750 200 0.06 | 124 |1800| warm at
455 126 (18) center
0.09 | 250 |1800| hotat
(24) center
Aeromet | 19.3 X 7789 194 0.06 124 15900 | warm at
100 123 (18) center
0..09 | 250 fractured
(24)
6AIl-4v 9.3 X 4429 110 0.06 70 | 2800
Titanium 127 (10)
(heat
treated)
0.09 | 100 |2800
(15)
0.12 140 | 2700 | warm at
(20) center




FEA assisted prediction of expected horn
losses at specified operating levels.

The expected power loss in a horn can be estimated if the Q
of the material is known for the maximum operating stress.

The method relies upon the definition of resonance as the
cyclic exchange of kinetic and potential energy. Kinetic
energy Is equal to the sum of each mass element multiplied
by half its peak velocity squared. The potential energy, Ep,
Is equal to the half the sum of the stress in each mass
element squared divided by Young’s modulus and is equal
at resonance to the kinetic energy, Ey:

E =2 (miviz)/z =0’%, (mi(;:iz)/z
where v=w¢, & being the displacement of the mass element.

2 2 2
w° =2E,[Z,(m&")=2E, [Z,(m,& ),as, at
resonance Ex=Ep.
Now suppose material is removed from the horn where

there is little motion but substantial stress, such as the
regions about a motional node. The potential energy thus is



decreased but, if the vibration amplitude is kept the same,
the sum zi(migzi)/z does not change. Then

a)lz =2E /%, (migiz) = Epl [E«, /woz]

where the subscripts 1 and 0 denote respectively the new
resonant frequency resulting from the removal of material
and the original resonant frequency.

We then have
(@] @,)" = Epy/ B = (Epy —AE,)/Ey, =1-AE,/E,,

Modal analysis provides both the resonant frequency, the
amplitude and stress distributions in the unaltered horn
permitting calculation of the potential energy in a small
amount of mass undergoing little displacement in
comparison to other parts of the horn and that is removed in
the altered horn. The analysis is then repeated with this
mass removed and a new resonant frequency computed.
Since then both and @y and o, as well as AK, are known,
Exo can be found as:

Eco = AE, /[1— (@ /@,)°]

Having found the stored energy of vibration at a particular
level of stress, the power dissipation ,P, in the horn follows,
from the definition of Q, as



P = f(energy lost per cycle) = 2nfEx/Q.

In a like manner, if some mass is added or subtracted from
a horn where there is maximum motion and neglible stress,
the stored energy of vibration can be found computing the
Kinetic energy, AK,, of the mass removed from the modal
analysis results for the unaltered horn as:

Keo = AK, /[1- (o, /0)1)2] .

Note that this analysis assumes that the Q is independent of
stress. Using the value of Q appropriate to the largest value
of stress in the horn will then provide an upper limit to
power consumption.

Maximum safe operating stresses
(strains) in ultrasonic horns.

Reference:
http://www.modalmechanics.com/Acoustic_loss_at_substantial_ultrasonic_strain_in_6Al
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm

It has generally been determined, from stress versus cycles
to failure data obtained from applying repetitive cyclic
stress to specimens, that indefinite life in vibration can be
obtained in metals by choosing the maximum operating
stress to be no more than one third of the yield stress for the
material. For example, the yield stress of 6AIl-4V titanium
Is about 120,000 psi (827 MPa). Indefinite horn life can be



achieved by ensuring that no part of the horn experiences
more than 40,000 psi (275 MPa).

It is possible to also design plastic horns, as has been
demonstrated by the technically, if not commercially,
successful development of the ultrasonic tooth brush. For a
material such as polycarbonate, the yield stress is about
9,000 psi (62 MPa). However, it has been found that above
a 20 kHz cyclic stress of about 400 psi (2.7 MPa), which
corresponds to a free end peak-peak displacement of a
simple half wavelength rod of 0.6 mils (15 p), failure
occurs due to softening of the material caused by the
elevation in temperature from cyclic stress loss. The Q of
polycarbonate has been measured to be about 70!
Nevertheless, its tested use as low frequency resonators,
such as those operating in 50-150 Hz region where the
power loss is reduced by low frequency operation, has
shown that it may operate indefinitely providing the
maximum cyclic stress is kept below 2,000 psi (1.4 MPa).
The table below provides data on the low frequency cyclic
endurance of some common thermoplastics.



Thermoplastic film Thickness Condition Density - Modulus Q

{inch) (Ibsf/in*3)  (psi)
PC (polycarbonate) 0.022 annealed 250F 1 hour 0.04 260,000 70
PVC (polyvinylchloride) 0.015 cut from packaging  0.048 460,000 55
PET (polyethylene terathylate) 0.012 cut from packaging-  0.047 860,000 100
PS (polystyrene) ‘ 0.013 cut from packaging  0.038 570,000 100
Thermoplastic fim Indefinite cyclic life fatique limit Notes
(psi)
PC (polycarbonate) 2,000 74 Hz, vane crack at 2300 psi
PVC (polyvinyichloride) 2,000 63 Hz, vane crack at 2500 psi
PET (polyethylene terathylate) >4,500 93 Hz, cyanoacrylate adhesive failure, vane intact
PS (polystyrene) 3,500 99 Hz, vane crack at 3750 psi
Table 1

Effect of residual stress upon Q

Material for horns is commonly obtained in round rod or
billet form. Stress induced during rolling or rerolling or by
forging have been shown to substantially affect the Q and
thus running power consumption. For 6Al-4V Titanium,
chiming measurements of blanks and tests made upon
horns finished from blanks showed that tips operating at
40,000 psi (275 MPa) peak stress made from blanks having
a Q below about 7500 heated sufficiently to cause tensile
failure.

Residual stress may be removed by annealing material prior
to machining. In 6-4 Ti, annealing will, in general, restore
the Q to its established level of about 20,000. Annealing of



other Titanium alloys as well as the stainless steels is also
recommended to obtain optimum performance.

Heat treatment to increase the yield strength of
precipitation hardenable stainless steels does not produce
the expected increase in free face displacement as many of
these treatments, especially those for 15-7PH ,17-4 PH,
Aeromet 100 and Custom 455, lower the Q and cause
failure from an elevation in temperature during operation.
The Q for all steels measured decreases, in any case, with
strain. In designing stainless steel horns, it is best to
choose materials with the highest yield strength in the
annealed state and to disregard the higher strength available
from heat treatment.



