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3.  Poisson’s constan
strain/imposed axi
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5 Maximum cyclic5.  Maximum cyclic 
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al strain 
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Den
 

 Density given by foundry e s ty g ve by ou d y
given by mill certificatio

 Density of an irregular b
dimensions can be found

 Measure the specimen’s 

 Then fill a container with
complete suspended subm

 Weigh the container fille

 Suspend the specimen by
neglible compared to the
that is completely subme

nsity 

y is usually accurate.  Density y s usua y accu ate. e s ty
on should be checked. 

blank not having uniform 
d by buoyancy measurements.

weight, Ws. in grams. 

h enough water to permit 
mersion of specimen. 

ed with water. 

y thread whose weight is 
e specimen in the container so 
erged. 





 Difference in weight mea
submersion, w, = weigh
displaced from which thedisplaced from which the
can be found in cubic cen
density of water is 1 gm/c
measured in grams. 

 The density of the specim
when Ws is given in gram

asured before and after 
ht of volume of water 
e volume of the specimen Ve volume of the specimen, Vs, 
ntimeters, knowing that the 
cc.:  Vs = w, cc when w is 

men, s, is then s = Ws/Vs, 
ms. 



Young’s 

Chiming

Reference:  http://www.modalmechani

modulus 

g Method 

ics.com/UIA_1998_presentation.htm  





 A sample specimen of th  A sample specimen of th
suspended by two threads
bar’s length, L, from its e

 The bar is struck at its ce
and the frequency of vibr
microphone connected to

  The extension sound velo
be found from the equatio
the first free-free flexuralt e st ee ee e u a

dimensions: 
28 fLc 

the measured frequency o
radius of gyration of the bradius of gyration of the b
to the neutral axis of bend
diameter d,  = d/4.  For a
t in the bending plane, g p

  Knowing c and , Young
as E=c2 

he material in bar form ishe material in bar form is 
s, each postioned 0.224 of the 
ends. 

nter with a soft faced hammer
ration is measured using 
o a frequency meter. 

ocity, c, of the material can 
on relating the frequency of 
l mode to the bar’s ode to t e ba s

2)0112.3(/ where f is 
of vibration and  is the 
bar cross section with respectbar cross section with respect 
ding.  For a round bar of 
a rectangular bar of thickness 

12/t . 

g’s modulus, E, may be found 



L
0.224L

Steady state ex

For materials such as many thermoplastics, w
chiming and make frequency measurements d
flexural resonance may be used to determine

xcitation method 

where elastic losses limit the d uration of 
difficult, steady state excitation of free -free 
 c.  



 Bar is supported by knife-ed
of the first free-free flexural

 Frequency of signal generat
from microphone attains a p

 Knowing f the extensional s
can be computed as previou

dges or thread at each node 
l resonance. 

tor is adjusted until signal 
peak value. 

sound velocity, and thus E, 
usly described. 



Fixed-Free flexuraFixed-Free flexura

Useful for measuring Youn
plastic sheep

al chiming methodal chiming method

ng’s modulus for metal and 
et and film. 





 Specimen vane is clampe
vise jaws. 

 Bimorph electrodes are a

 Vane is deflected and rel

 Frequency of vibration, f
is related to the exte

8 2fLc

 where

8



fLc

ed between a bimorph and 

attached to a frequency meter.

leased. 

f, as read by frequency meter, 
ensional sound velocity as 

)1941(/ 2

12 t/

)194.1(/




 



Poisson’sPoisson s

Foundries may not tabulate thi
material properties.  Howeverp p
value is essential to the design
dimensions are comparable to 

constant constant

is constant in their listing of 
r an accurate assessment of its 
n of horn whose lateral 

their length. 



Driven reson

h di l di l hThe radial displacement at the
specimen is *extensional stra
specimen’s axis*the radius R.

  For a slender uniform half wa
extensional strain at the axial 
equal to the extensional veloci
end divided by the extensiona

nance method 

f f h f he surface of the center of the 
ain at the center of 

avelength cylinder, the 
center of the specimen is 
ity at the center of the free 

al sound velocity, c.



t lt ito ultrasonic
transducer

R
measure radial 
displacement

R

R

driving horndriving horn

specimen
blank
length adjustedg j
to resonate at
driving frequencyL

measure 
extensional
displacement
 E



   For results accurate to a
right round specimen bla
times its diameter, to res
f, as the ultrasonic transd

 For specimens whose dia For specimens whose dia
their length, the computa
accurate to within ten pe

  Drive blank at a measur

   Measure radial displace
blank at L/2, the center o

)(( cR
      

)((
RE

R


 

sound velo

about two percent, machine 
ank, whose length is 5 or more 
sonate at the same frequency, 
ducer+driving horn. 

ameter approximately equalsameter approximately equals 
ation of  given below is 
ercent. 

red extension displacement, E.

ement ,R, of the specimen 
of the blank length.

))
R where c is the extensional 

ocity, and =2 



FEA assisted measur
Cons

Refere
http://www.modalmechanics.com/UIA_

s.ht

rement of Poisson’s 
stant 

ence:  
_2002_presentation_Poisson&Young'
tm 



Method takes advantage of the
vibration is far less dependent
is torsional resonance.  It also 
on the ratio of specimen lengthon the ratio of specimen length
the specimen dimensions be ad
excitation source. 

Flexural vibration frequency is
approximation, to the square ro

Torsional vibration frequencyTorsional vibration frequency,
is also dependent upon the squ
rigidity define as G = E/2(1+

e fact that flexural resonant 
t upon Poisson’s constant than 
does not require a restriction 
h to lateral dimension or thath to lateral dimension or that 
djusted to resonate with an 

s proportional, in the first 
oot of Young’s modulus.  

to the same approximation, to the same approximation,
uare root of the modulus of 
). 



Given a specimen blank that c
an FEA program the blank isan FEA program, the blank is 
and then torsional free-free vib
the frequencies measured.  De
mode frequency range can usu

li i FEA d l lpreliminary FEA modal analy
E and . 

can be accurately modeled in 
excited into free-free flexuralexcited into free free flexural 
bration as shown below and 
etermination of the correct 
ually be determined from a 

i i i l l fsis using nominal values for 







 U i i l l f Using a nominal value fo
of the first free-free flexu
from FEA modal analysis

 
 The value of E is then adj

initial value of E by the s
computed flexural resona
that measuredthat measured.  


E2 

 where fc and fm are the co
flexural resonant frequen

b h E d h for both E and , the frequency 
ural resonance is computed 
s. 

djusted by multiplying the 
square of the ratio of 
ant frequency measured to 

E
fm
fc 2)(  

mputed and actualmeasured 
ncies. 



 The value E2 is then assig
second modal analysis pe
flexural resonance close t
resulting in a new compu

 
 The value of  is then adj

tit (1+ ) b thquantity (1+) by the squ
computed frequency and
result: 

 


1(2 

h f d f h where ftm and ft2 are the m
torsional frequencies.  No
this correction to , the in
square of the torsional fresquare of the torsional fre
proportional to Poisson’s 

gned to the material and a 
erformed, resulting in a 
to that measured and also 

uted torsional frequency, ft2.   

justed by multiplying the 
f ti f d tuare of ratio of measured to 

d subtracting 1 from this 

1))( 2

2


t

tm

f
f

 

d d dmeasured and computed 
ote that frequency ratio is, for 
nverse of that for E as the 
equency is inverselyequency is inversely 
constant. 



 Modal analysis is again p
computed flexural and torcomputed flexural and tor
Again the value of E is ad
the value of E2 by the squ
measured to the compute

 
 Modal analysis is again p

described above. 
 
 The iterations continue un

agreement between the m
torsional resonances with

hi d i ll hachieved.  Typically, thre
achieve an accuracy of b

 

performed, resulting in new 
rsional resonant frequenciesrsional resonant frequencies.  
djusted to E3 by multiplying 
uare of the ratio of the 
d frequency. 

performed to adjust  as 

ntil the desired level of 
measured flexural and 
h the computed values is 

i i i dee iterations are required to 
etter than 99 percent. 



Q and Cyc
Reference:  http://www.modalmecha

clic Fatigue 
nics.com/UIA_1998_presentation.htm 



The mechanical Q of a horn d
consumption at any given lev
temperature rise and, ultimate
vibration without failure as favibration without failure as fa
with temperature. 
 
For low levels of cyclic stress
d ib d i th tdescribed in the measurement
method of measurement. 
 
From measurement of the dec
as it sometimes termed, ring-d
oscilloscope depicting the mic
rapidly determined as shown b
chimechime. 

determines its power 
vel of vibration and thus its 
ely, its ability of withstand 
atigue strengthvaries inverselyatigue strength varies inversely 

s, chiming, previously 
t f E ff d i lt of E, affords a simple 

cay of vibration amplitude or, 
down, as recorded on an 
crophone signal, Q can be 
below for Macor ceramic bar 





The Q can be fo nd b rememThe Q can be found by remem
as 2 times the ratio of total v
energy lost per cycle and that 
proportional to the square of thp p q
shown, since the rate at which
proportional to the total energy
that the amplitude, , at any po
excited into resonant vibrationexcited into resonant vibration
decay, must diminish exponen
 









expo

 
exp

where f is the frequency, t is th
o is the initial amplitude. 
 

mbering that the Q is definedmbering that the Q is defined 
vibrational energy to the 

vibration energy is 
he amplitude, it can be p ,

h energy is lost per cycle is 
y of vibration at any time, 
oint on a resonator initially 
n and then allowed to freelyn, and then allowed to freely 
ntially: 

ft 



Q 
,  

he time of the observation and 



If amplitudes 1 and 2  are me
from the above equation , 
 

Q


Q  
ln

 
where t1 - t2  = t. 
 
Measuring the amplitude of th
then again 2 at time t2, and kn
may be computed The table bmay be computed.  The table b
measured using this method on
 

easured at times t1 and t2,  

f t f









1

2      

he decay, 1 , at time t1
 and 

nowing the frequency f, the Q 
below gives the value of Qbelow gives the value of Q 
n a variety of materials. 



Figu

Magnetically lev
 

M t i lMaterial

6Al-4V Titanium Lo

6Al-4V An
17-4PH Stainless Steel An

PH15-7Mo Stainless Steel An
PH15-7Mo Ha
PH13-8Mo Stainless Steel An

Custom 455 Stainless Steel H9
MACORTM As

Chiming Q of V
 

ure 1 

vitate d test chime 

C diti QCondition Q

ots, as received  2,000-6,000 

nnealed 18,000-22,000 

nnealed 7,000 

nnealed 17,000 

ardened 17,000 
nnealed 10,000 

900 condition 10,000 
s received  5,000 
 

Various Materials  



However, caution is advised i
operation at large strains as on
invariant with cyclic strain un
is reached Other metals partis reached.  Other metals, part
stainless steels and precipitati
such as 17-4 PH,  exhibit a de
increased cyclic strain. 
 
Other researchers have report
strains for a variety of materia
 

in using these values to predict 
nly in 6Al-4V is the Q 
ntil a level of about .25 percent 
ticularly the 300 seriesticularly the 300 series 
ion hardened stainless steels, 
eclining value of Q with 

ted values of Q at various 
als, as shown below. 



Figu

Measured room temperature Qua

Material 

90Ti-6Al-4V Titanium alloy 20

Low carbon steel 2

Lead 5

Aluminum 10

Magnesium 5

Tungsten carbide steel 8

Bakelite 2Bakelite 2

Polycarbonate (unreinforced)  1

Unfilled polypropylene  1

 

ure 1 

ality factors for selected materials
 
Q Notes 

,000 Annealed. Strain  0.003, 17 kHz 

250 Annealed, Strain <0.0001, 23 kHz 

500 Commercially pure,Strain < 0.00025 

,000  ,

700  

180  

200 Strain < 0024 17 6 kHz200 Strain < .0024, 17.6 kHz

100 Strain  0.005, 20kHz 

100 Strain 0.005, 20 kHz 

 



Measurement of Q
power con

 
At appreciable strains, the Q m
machining a wavelength rod o
frequency of the driving transd
th l t i l Pthe electrical power, P1, consu
driving this rod.  The rod is th
wavelength and the power con
is measured.
 

 at large strains by 
nsumption 

may be measured by 
of the material resonant at the 
ducer+horn and measuring 

d b th t d humed by the transducer when 
en shortened by a half 
nsumed in driving the rod, P2, 



The energy stored in a half wa
equal to one quarter of the ma
by the free end velocity, Vo, squ
 

E=m(V

The energy consumed per cycThe energy consumed per cyc
power consumption measured 
vibration: 
 

EEd=

avelength prismatic rod is 
ass of the rod, M, multiplied 
uared: 

Vo)2/4 

le of vibration Ed is thele of vibration, Ed, is the 
divided by the frequency of 

P/f=P/f



The difference P1-P2 is the pow
wavelength of the material, h
 

Q=2[energy stored per cy
 

 [m(V )2f] [m(Vo) f]

 where Vo = 2f ,  bein
displacement of the rod whic

and P2 mea

This method takes into accoun
coupling of the rod to the drivcoupling of the rod to the driv
into account the energy conve
transducer.  Typically a piezo
efficiency is in the range of 9

i thi t h i iusing this technique are given
 
http://www.modalmechanics.com/UIA_2002

wer consumed by a half 
hence: 

ycle/energy lost per cycle] = 

f]/[2(P1 P2)]f]/[2(P1-P2)],  
 
ng the observed free end 

ch is kept the same for both P1 
asurements. 
 
nt any losses produced the 
ving horn, but it does not takeving horn, but it does not take 
ersion efficiency of the 
o-electric transducer’s 
5 percent.  Measurements 
bn by

2_presentation_Q _stainless_steels.htm  



If greater accuracy is desired, 
to a method for measuring Q t
temperature rise of a specimen
 
http://www.modalmechanics.com/Acoustic_lo
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm
 
 
The table below summarizes s
by thermal measurements. 
 

interested parties are referred 
that relies wholly upon the 
n that is given in 

oss_at_substantial_ultrasonic_strain_in_6Al
m 

some of the results obtained 



sampl
eD 

Diame
ter x 

Densit
y 

3

Young
’s 

c
s

length
mm 

kg/m3 Modul
us 

Gpa 

p

Custo 12.6 x 7750 200 
m 455 126

    

Aerom
et 100 

19.3 x 
123 

7789 194

    

6Al-
4v 

Titani

9.3 x 
127 

4429 110 

um 
(heat 

treated
) 
 

    

 

cyclic 
strain 

cyclic 
stress 

Q comm
ents 

percen
t 

Mpa 
(kpsi) 

0.06 124 1800 warm 
(18) at 

center 
0.09 250 

(24) 
1800 hot at 

center 
0.06 124 

(18) 
5900 warm 

at 
center 

0..09 250  fractur
(24) ed

0.06 70 
(10) 

2800  

0.09 100 
(15) 

2800

0.12 140 
(20) 

2700 warm 
at 

center



FEA assisted predict
losses at specifiedp

The expected power loss in a 
of the material is known for t

The method relies upon the de
cyclic exchange of kinetic an
energy is equal to the sum ofenergy is equal to the sum of 
by half its peak velocity squar
is equal to the half the sum of
element squared divided by Y
t t th ki tiat resonance to the kinetic ene

 
(2/)( 22

iiiiiK mvmE  
 
where v=,  being the disp
 

tion of expected horn 
d operating levels.p g
 
horn can be estimated if the Q

the maximum operating stress.

efinition of resonance as the 
nd potential energy.  Kinetic 
each mass element multipliedeach mass element multiplied 
red.  The potential energy, EP, 

f the stress in each mass 
Young’s modulus and is equal 

Eergy, Ek:

2/)2
i  

placement of the mass element.



2)(/2 22 E  2)(/2 22
iiiK mE  

resonance EK=EP. 
 
Now suppose material is remoNow suppose material is remo
there is little motion but subst
regions about a motional node
decreased but, if the vibration

2the sum i(mi2
i)/2 does not c

 

(/2 2
1

2
1 iiiP mE   (11 iiiP 

where the subscripts 1 and 0 d
resonant frequency resulting f
and the original resonant frequ
 

)(/2 2E  )(/2 2
iiiP mE  , as, at 

oved from the horn whereoved from the horn where 
tantial stress, such as the 
e.  The potential energy thus is
n amplitude is kept the same, 
hange.  Then 

]//[) 2
01 oKp EE  ][) 01 oKp

denote respectively the new 
from the removal of material 
uency. 



We then have 
 

001
2

01 (/)/( PKP EEE 
 
M d l l i id b thModal analysis provides both 
amplitude and stress distributi
permitting calculation of the p
amount of mass undergoing li
comparison to other parts of t
the altered horn.  The analysis
mass removed and a new reso
Since then both and0 and Since then both and 0 and 
EK0 can be found as: 
 

/(1/[ 10 PK EE  /(1/[ 10 PK EE 
 

00 /1/) KpKp EEEE 

th t f ththe resonant frequency,  the 
ions in the unaltered horn 
potential energy in a small 
ittle displacement in 
the horn and that is removed in 
s is then repeated with this 

onant frequency computed.  
1 as well asK are known1 as well as Kp are known, 

])2 ])o



Having found the stored energ
level of stress, the power diss
from the definition of Q, as 
 
P = f(energy lost per cycle) = 
 
In a like manner, if some masIn a like manner, if some mas
a horn where there is maximu
the stored energy of vibration
kinetic energy, Ke, of the ma

l i lt f th ltanalysis results for the unalter
 

/(1/[ 00  eE KK

gy of vibration at a particular 
ipation ,P, in the horn follows, 

2fEK0/Q. 

ss is added or subtracted fromss is added or subtracted from 
um motion and neglible stress, 
n can be found computing the 
ass removed from the modal 

d hred horn as: 

])2
1 . 



Note that this analysis assume
stress.  Using the value of Q ap
of stress in the horn will then p
power consumption.

s that the Q is independent of 
ppropriate to the largest value 
provide an upper limit to 



Maximum safe oMaximum safe o
(strains) in ultr

Reference: 
http://www.modalmechanics.com/Acoustic_lo
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm
 

perating stressesperating stresses 
rasonic horns. 

oss_at_substantial_ultrasonic_strain_in_6A l
m  



It has generally been determin
to failure data obtained from a
stress to specimens that indefistress to specimens, that indefi
obtained in metals by choosin
stress to be no more than one t
material.  For example, the yie
is about 120,000 psi (827 MPa
achieved by ensuring that no p
more than 40,000 psi (275 MP
 

ned, from stress versus cycles 
applying repetitive cyclic 
finite life in vibration can befinite life in vibration can be 
ng the maximum operating 
third of the yield stress for the
eld stress of 6Al-4V titanium 
a).  Indefinite horn life can be 
part of the horn experiences 
Pa). 



It is possible to also design pl
demonstrated by the technicademonstrated by the technica
successful development of the
material such as polycarbonat
9,000 psi (62 MPa).  However

20 kH li t f ba 20 kHz cyclic stress of abou
corresponds to a free end peak
simple half wavelength rod of
occurs due to softening of theg
elevation in temperature from
polycarbonate has been measu
Nevertheless, its tested use as
such as those operating in 50such as those operating in 50-
power loss is reduced by low 
shown that it may operate ind
maximum cyclic stress is kept
The table below provides data
endurance of some common t

astic horns, as has been 
lly if not commerciallylly, if not commercially, 
e ultrasonic tooth brush.  For a 
te, the yield stress is about 
r, it has been found that above 
t 400 i (2 7 MP ) hi hut 400 psi (2.7 MPa), which 

k-peak displacement of a 
f 0.6 mils (15 ), failure 
e material caused by the y
m cyclic stress loss.  The Q of 
ured to be about 70!  
s low frequency resonators, 
150 Hz region where the-150 Hz region where the 
frequency operation, has 

definitely providing the 
t below 2,000 psi (1.4 MPa).  
a on the low frequency cyclic 
thermoplastics. 



 



Effect of residu
 

ual stress upon Q 



Material for horns is commonMaterial for horns is common
billet form.  Stress induced du
forging have been shown to su
thus running power consumpt
hi i t f blchiming measurements of blan

horns finished from blanks sh
40,000 psi (275 MPa) peak str
a Q below about 7500 heated 
failure. 

nly obtained in round rod ornly obtained in round rod or 
uring rolling or rerolling or by 
ubstantially affect the Q and 
tion.  For 6Al-4V Titanium, 

k d t t dnks and tests made upon 
howed that tips operating at 
ress made from blanks having 
sufficiently to cause tensile y



Residual stress may be remov
to machining.  In 6-4 Ti, anne
the Q to its established level o
other Titanium alloys as well 
recommended to obtain optimrecommended to obtain optim
 
Heat treatment to increase the
precipitation hardenable stain
th t d i i fthe expected increase in free 
these treatments, especially th
Aeromet 100 and Custom 455
failure from an elevation in te
The Q for all steels measured 
strain.  In designing stainless 
choose materials with the high
annealed state and to disregarannealed state and to disregar
from heat treatment. 

ved by annealing material prior
ealing will, in general, restore 
of about 20,000.  Annealing of
as the stainless steels is also 

mum performance.mum performance.  

e yield strength of 
nless steels does not produce 
f di l t fface displacement as many of 
hose for 15-7PH ,17-4 PH, 
5, lower the Q and cause 
emperature during operation.   p g p
decreases, in any case, with 
steel horns, it is best to 
hest yield strength in the 

rd the higher strength availablerd the higher strength available
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1. Density,  = mass/unit volume 

2.  Young’s modulus, E = stress/unit 
strain 

3.  Poisson’s constant,  = -transverse 
strain/imposed axial strain 

4.  Q = 2*(energy stored/energy lost) per 
cycle of vibration 

5.  Maximum cyclic operating stress, p 



Density 
 

 Density given by foundry is usually accurate.  Density 
given by mill certification should be checked. 

 Density of an irregular blank not having uniform 
dimensions can be found by buoyancy measurements. 

1. Measure the specimen’s weight, Ws. in grams. 

2. Then fill a container with enough water to permit 
complete suspended submersion of specimen. 

3. Weigh the container filled with water. 

4. Suspend the specimen by thread whose weight is 
neglible compared to the specimen in the 
container so that is completely submerged. 



5. 
 

6. Difference in weight measured before and after 
submersion, w, = weight of volume of water 
displaced from which the volume of the 
specimen, Vs, can be found in cubic centimeters, 
knowing that the density of water is 1 gm/cc.:  Vs 
= w, cc when w is measured in grams. 

7. The density of the specimen, s, is then s = 
Ws/Vs, when Ws is given in grams. 



Young’s modulus 

 

Chiming Method 

Reference:  http://www.modalmechanics.com/UIA_1998_presentation.htm 

 

  A sample specimen of the material in bar form is 
suspended by two threads, each postioned 0.224 of the 
bar’s length, L, from its ends. 

 The bar is struck at its center with a soft faced hammer 
and the frequency of vibration is measured using 
microphone connected to a frequency meter. 



  The extension sound velocity, c, of the material can 
be found from the equation relating the frequency of 
the first free-free flexural mode to the bar’s 

dimensions: 
22 )0112.3(/8 fLc  where f is 

the measured frequency of vibration and  is the 
radius of gyration of the bar cross section with respect 
to the neutral axis of bending.  For a round bar of 
diameter d,  = d/4.  For a rectangular bar of thickness 
t in the bending plane, 12/t . 

  Knowing c and , Young’s modulus, E, may be found 
as E=c2 

 

Steady state excitation method 

For materials such as many thermoplastics, where elastic 
losses limit the duration of chiming and make frequency 

measurements difficult, steady state excitation of free-free 
flexural resonance may be used to determine c. 



L
0.224L

 

 Bar is supported by knife-edges or thread at each node 
of the first free-free flexural resonance. 

 Frequency of signal generator is adjusted until signal 
from microphone attains a peak value. 

 Knowing f the extensional sound velocity, and thus E, 
can be computed as previously described. 

 



Fixed-Free flexural chiming method 

Useful for measuring Young’s modulus for metal and 
plastic sheet and film. 

 

1. Specimen vane is clamped between a bimorph and 
vise jaws. 

2. Bimorph electrodes are attached to a frequency meter. 

3. Vane is deflected and released. 



4. Frequency of vibration, f, as read by frequency meter, 
is related to the extensional sound velocity as 

12 t/ where

)194.1(/8 22


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

fLc
 

 

Poisson’s constant 

Foundries may not tabulate this constant in their listing of 
material properties.  However an accurate assessment of its 
value is essential to the design of horn whose lateral 
dimensions are comparable to their length. 

 



Driven resonance method 

The radial displacement at the surface of the center of the 
specimen is *extensional strain at the center of 
specimen’s axis*the radius R. 

  For a slender uniform half wavelength cylinder, the 
extensional strain at the axial center of the specimen is 
equal to the extensional velocity at the center of the free 
end divided by the extensional sound velocity, c. 

measure 
extensional
displacement

to ultrasonic
transducer

driving horn

R





E

measure radial 
displacement

R

specimen
blank
length adjusted
to resonate at
driving frequencyL

 



1.   For results accurate to about two percent, machine 
right round specimen blank, whose length is 5 or more 
times its diameter, to resonate at the same frequency, 
f, as the ultrasonic transducer+driving horn. 

 For specimens whose diameter approximately equals 
their length, the computation of  given below is 
accurate to within ten percent. 

2.  Drive blank at a measured extension displacement, E. 

3.   Measure radial displacement ,R, of the specimen 
blank at L/2, the center of the blank length. 

4.      
))((

R
c

E

R


 

 where c is the extensional 

sound velocity, and =2 

 

FEA assisted measurement of Poisson’s 
Constant 

Reference:  
http://www.modalmechanics.com/UIA_2002_presentation_Poisson&Young'

s.htm 



 

Method takes advantage of the fact that flexural resonant 
vibration is far less dependent upon Poisson’s constant than 
is torsional resonance.  It also does not require a restriction 
on the ratio of specimen length to lateral dimension or that 
the specimen dimensions be adjusted to resonate with an 
excitation source. 

Flexural vibration frequency is proportional, in the first 
approximation, to the square root of Young’s modulus. 

Torsional vibration frequency, to the same approximation, 
is also dependent upon the square root of the modulus of 
rigidity define as G = E/2(1+). 

Given a specimen blank that can be accurately modeled in 
an FEA program, the blank is excited into free-free flexural 
and then torsional free-free vibration as shown below and 
the frequencies measured.  Determination of the correct 
mode frequency range can usually be determined from a 
preliminary FEA modal analysis using nominal values for 
E and . 



 



 

Measurement of torsional resonant frequency 
 

 Using a nominal value for both E and , the frequency 
of the first free-free flexural resonance is computed 
from FEA modal analysis. 

 
 The value of E is then adjusted by multiplying the 

initial value of E by the square of the ratio of 
computed flexural resonant frequency measured to 
that measured.   

 E
fm
fcE 2

2 )(  

 where fc and fm are the computed and actual measured 
flexural resonant frequencies. 



 
 The value E2 is then assigned to the material and a 

second modal analysis performed, resulting in a 
flexural resonance close to that measured and also 
resulting in a new computed torsional frequency, ft2.   

 
 The value of  is then adjusted by multiplying the 

quantity (1+) by the square of ratio of measured to 
computed  frequency and subtracting 1 from this 
result: 

 

 
1))(1( 2

2
2 

t

tm

f
f

 

 where ftm and ft2 are the measured and computed 
torsional frequencies.  Note that frequency ratio is, for 
this correction to , the inverse of that for E as the 
square of the torsional frequency is inversely 
proportional to Poisson’s constant. 

 
 Modal analysis is again performed, resulting in new 

computed flexural and torsional resonant frequencies.  
Again the value of E is adjusted to E3 by multiplying 
the value of E2 by the square of the ratio of the 
measured to the computed frequency. 

 
 Modal analysis is again performed to adjust  as 

described above. 
 



 The iterations continue until the desired level of 
agreement between the measured flexural and 
torsional resonances with the computed values is 
achieved.  Typically, three iterations are required to 
achieve an accuracy of better than 99 percent. 

 
 
 

Q and Cyclic Fatigue 
 

Reference:  http://www.modalmechanics.com/UIA_1998_presentation.htm 
 

The mechanical Q of a horn determines its power 
consumption at any given level of vibration and thus its 
temperature rise and, ultimately, its ability of withstand 
vibration without failure as fatigue strength varies inversely 
with temperature. 
 
For low levels of cyclic stress, chiming, previously 
described in the measurement of E, affords a simple 
method of measurement. 
 
From measurement of the decay of vibration amplitude or, 
as it sometimes termed, ring-down, as recorded on an 
oscilloscope depicting the microphone signal, Q can be 
rapidly determined as shown below for Macor ceramic bar 
chime. 
 



 
 
The Q can be found by remembering that the Q is defined 
as 2 times the ratio of total vibrational energy to the 
energy lost per cycle and that vibration energy is 
proportional to the square of the amplitude, it can be 
shown, since the rate at which energy is lost per cycle is 
proportional to the total energy of vibration at any time, 
that the amplitude, , at any point on a resonator initially 
excited into resonant vibration, and then allowed to freely 
decay, must diminish exponentially: 
 





o

ft
Q 



 


exp ,       

where f is the frequency, t is the time of the observation and 



o is the initial amplitude. 
 
If amplitudes 1  and 2  are measured at times t1 and t2,  
from the above equation , 
 

Q
f t

 











ln 1

2       
 
where t1 - t2  = t. 
 
Measuring the amplitude of the decay, 1 , at time t1

 and 
then again 2 at time t2, and knowing the frequency f, the Q 
may be computed.  The table below gives the value of Q 
measured using this method on a variety of materials. 
 

Figure 1 

Magnetically levitated test chime 
 

Material Condition Q 

6Al-4V Titanium Lots, as received 2,000-6,000 
6Al-4V Annealed 18,000-22,000 
17-4PH Stainless Steel Annealed 7,000 
PH15-7Mo Stainless Steel Annealed 17,000 
PH15-7Mo Hardened 17,000 
PH13-8Mo Stainless Steel Annealed 10,000 
Custom 455 Stainless Steel H900 condition 10,000 
MACORTM As received 5,000 

 
Chiming Q of Various Materials 

 
However, caution is advised in using these values to predict 
operation at large strains as only in 6Al-4V is the Q 



invariant with cyclic strain until a level of about .25 percent 
is reached.  Other metals, particularly the 300 series 
stainless steels and precipitation hardened stainless steels, 
such as 17-4 PH,  exhibit a declining value of Q with 
increased cyclic strain. 
 
Other researchers have reported values of Q at various 
strains for a variety of materials, as shown below. 
 



Figure 2 

Measured room temperature Quality factors for selected materials 
 

Material Q Notes 

90Ti-6Al-4V Titanium alloy 20,000 Annealed. Strain  0.003, 17 kHz 

Low carbon steel 250 Annealed, Strain <0.0001, 23 kHz 

Lead 500 Commercially pure,Strain < 0.00025 

Aluminum 10,000  

Magnesium 5700  

Tungsten carbide steel 8180  

Bakelite 200 Strain < .0024, 17.6 kHz 

Polycarbonate (unreinforced) 100 Strain  0.005, 20kHz 

Unfilled polypropylene 100 Strain 0.005, 20 kHz 

 
 

Measurement of Q at large strains by 
power consumption 

 
At appreciable strains, the Q may be measured by 
machining a wavelength rod of the material resonant at the 
frequency of the driving transducer+horn and measuring 
the electrical power, P1, consumed by the transducer when 
driving this rod.  The rod is then shortened by a half 
wavelength and the power consumed in driving the rod, P2, 
is measured. 
 



The energy stored in a half wavelength prismatic rod is 
equal to one quarter of the mass of the rod, M, multiplied 
by the free end velocity, Vo, squared: 
 

E=m(Vo)2/4 
 

The energy consumed per cycle of vibration, Ed, is the 
power consumption measured divided by the frequency of 
vibration: 
 

Ed=P/f 
 

The difference P1-P2 is the power consumed by a half 
wavelength of the material, hence: 
 

Q=2[energy stored per cycle/energy lost per cycle] = 
 

 [m(Vo)2f]/[2(P1-P2)],  
 

 where Vo = 2f ,  being the observed free end 
displacement of the rod which is kept the same for both P1 

and P2 measurements. 
 

This method takes into account any losses produced the 
coupling of the rod to the driving horn, but it does not take 
into account the energy conversion efficiency of the 
transducer.  Typically a piezo-electric transducer’s 
efficiency is in the range of 95 percent.  Measurements 
using this technique are given by 
 
http://www.modalmechanics.com/UIA_2002_presentation_Q_stainless_steels.htm 



 
 
If greater accuracy is desired, interested parties are referred 
to a method for measuring Q that relies wholly upon the 
temperature rise of a specimen that is given in 
 
http://www.modalmechanics.com/Acoustic_loss_at_substantial_ultrasonic_strain_in_6Al
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm 
 
 
The table below summarizes some of the results obtained 
by thermal measurements. 
 

20 kHz Acoustic Loss of Heat Treated High Strength alloys 
 

sampleD Diameter 
x length 

mm 

Density 
kg/m3 

Young’s
Modulus

Gpa 

cyclic 
strain 

percent

cyclic 
stress
Mpa 

(kpsi)

Q comments

Custom 
455 

12.6 x 
126 

7750 200 0.06 124 
(18) 

1800 warm at 
center 

    0.09 250 
(24) 

1800 hot at 
center 

Aeromet 
100 

19.3 x 
123 

7789 194 0.06 124 
(18) 

5900 warm at 
center 

    0..09 250 
(24) 

 fractured 

6Al-4v 
Titanium 

(heat 
treated) 

9.3 x 
127 

4429 110 0.06 70 
(10) 

2800  

    0.09 100 
(15) 

2800  

    0.12 140 
(20) 

2700 warm at 
center 



 
 
 

FEA assisted prediction of expected horn 
losses at specified operating levels. 

 
The expected power loss in a horn can be estimated if the Q 
of the material is known for the maximum operating stress. 

 
The method relies upon the definition of resonance as the 
cyclic exchange of kinetic and potential energy.  Kinetic 
energy is equal to the sum of each mass element multiplied 
by half its peak velocity squared.  The potential energy, EP, 
is equal to the half the sum of the stress in each mass 
element squared divided by Young’s modulus and is equal 
at resonance to the kinetic energy, Ek: 
 

2/)(2/)( 222
iiiiiiK mvmE    

 
where v=,  being the displacement of the mass element. 
 

)(/2)(/2 222
iiiPiiiK mEmE   , as, at 

resonance EK=EP. 
 
Now suppose material is removed from the horn where 
there is little motion but substantial stress, such as the 
regions about a motional node.  The potential energy thus is 



decreased but, if the vibration amplitude is kept the same, 
the sum i(mi2

i)/2 does not change.  Then 
 

]//[)(/2 2
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2
1

2
1 oKpiiiP EEmE    

where the subscripts 1 and 0 denote respectively the new 
resonant frequency resulting from the removal of material 
and the original resonant frequency. 
 
We then have 
 

00001
2

01 /1/)(/)/( KpKpPKP EEEEEEE 
 
Modal analysis provides both the resonant frequency,  the 
amplitude and stress distributions in the unaltered horn 
permitting calculation of the potential energy in a small 
amount of mass undergoing little displacement in 
comparison to other parts of the horn and that is removed in 
the altered horn.  The analysis is then repeated with this 
mass removed and a new resonant frequency computed.  
Since then both and 0  and 1 as well as Kp are known, 
EK0 can be found as: 
 

])/(1/[ 2
10 oPK EE   

 
Having found the stored energy of vibration at a particular 
level of stress, the power dissipation ,P, in the horn follows, 
from the definition of Q, as 
 



P = f(energy lost per cycle) = 2fEK0/Q. 
 
In a like manner, if some mass is added or subtracted from 
a horn where there is maximum motion and neglible stress, 
the stored energy of vibration can be found computing the 
kinetic energy, Ke, of the mass removed from the modal 
analysis results for the unaltered horn as: 
 

])/(1/[ 2
100  eE KK . 

 
Note that this analysis assumes that the Q is independent of 
stress.  Using the value of Q appropriate to the largest value 
of stress in the horn will then provide an upper limit to 
power consumption. 

 
Maximum safe operating stresses 

(strains) in ultrasonic horns. 
 

Reference: 
http://www.modalmechanics.com/Acoustic_loss_at_substantial_ultrasonic_strain_in_6Al
-6V-2Sn_and_sintered_6Al-4V_Titanium.htm  
 
It has generally been determined, from stress versus cycles 
to failure data obtained from applying repetitive cyclic 
stress to specimens, that indefinite life in vibration can be 
obtained in metals by choosing the maximum operating 
stress to be no more than one third of the yield stress for the 
material.  For example, the yield stress of 6Al-4V titanium 
is about 120,000 psi (827 MPa).  Indefinite horn life can be 



achieved by ensuring that no part of the horn experiences 
more than 40,000 psi (275 MPa). 
 
It is possible to also design plastic horns, as has been 
demonstrated by the technically, if not commercially, 
successful development of the ultrasonic tooth brush.  For a 
material such as polycarbonate, the yield stress is about 
9,000 psi (62 MPa).  However, it has been found that above 
a 20 kHz cyclic stress of about 400 psi (2.7 MPa), which 
corresponds to a free end peak-peak displacement of a 
simple half wavelength rod of 0.6 mils (15 ), failure 
occurs due to softening of the material caused by the 
elevation in temperature from cyclic stress loss.  The Q of 
polycarbonate has been measured to be about 70!  
Nevertheless, its tested use as low frequency resonators, 
such as those operating in 50-150 Hz region where the 
power loss is reduced by low frequency operation, has 
shown that it may operate indefinitely providing the 
maximum cyclic stress is kept below 2,000 psi (1.4 MPa).  
The table below provides data on the low frequency cyclic 
endurance of some common thermoplastics. 
 



 
 
 
 

Effect of residual stress upon Q 
 
Material for horns is commonly obtained in round rod or 
billet form.  Stress induced during rolling or rerolling or by 
forging have been shown to substantially affect the Q and 
thus running power consumption.  For 6Al-4V Titanium, 
chiming measurements of blanks and tests made upon 
horns finished from blanks showed that tips operating at 
40,000 psi (275 MPa) peak stress made from blanks having 
a Q below about 7500 heated sufficiently to cause tensile 
failure. 
 
Residual stress may be removed by annealing material prior 
to machining.  In 6-4 Ti, annealing will, in general, restore 
the Q to its established level of about 20,000.  Annealing of 



other Titanium alloys as well as the stainless steels is also 
recommended to obtain optimum performance.   
 
Heat treatment to increase the yield strength of 
precipitation hardenable stainless steels does not produce 
the expected increase in free face displacement as many of 
these treatments, especially those for 15-7PH ,17-4 PH, 
Aeromet 100 and Custom 455, lower the Q and cause 
failure from an elevation in temperature during operation.   
The Q for all steels measured decreases, in any case, with 
strain.  In designing stainless steel horns, it is best to 
choose materials with the highest yield strength in the 
annealed state and to disregard the higher strength available 
from heat treatment. 


