

# Protease Inactivation in Milk by Thermosonication and Impact on Milk Characteristics

Sakthi Vijayakumar David Grewell Stephanie Jung Stephanie Clark

#### **IOWA STATE UNIVERSITY** Department of Food Science and Human Nutrition

# Outline

- Ultrasound in the Food and Dairy Industries
- Research Objective
- Experimental Design
- Results
- Implications
- Questions



# Ultrasound in the Food Industry

- Activation/inactivation of microorganisms (Chemat and Hoarau, 2004; Knorr et al., 2004)
- Activation/inactivation of enzymes
  - Peroxidase inactivated when sonicated over 3 hrs (Mason et al., 1996)
- Extraction processes
  - Enhanced mass transfer in sugar extraction (Chendke and Fogler, 1975)
- Quality Control
  - Measured extent of crystallization and melting in emulsion (Mason et al., 1996)

# Ultrasound in the Dairy Industry

- Increasing cheese yield (Muller, 1992)
- Decrease in time for yogurt production (Mason et al., 1996)
- Homogenization (Gaffney, 1997)
- Inactivation of microorganisms (Mason et al., 1999)
- Inactivation of spoilage enzymes (Raviyan et al., 2005)
- Freezing
  - Promote nucleation and reduce ice crystal size in ice cream (Zheng and Sun, 2006)

# Fluid Milk Limitation

- Shelf-life
  - How long does it stay good in your refrigerator?
  - What do you observe at the end of the milk's shelf-life?
- Is it safe to drink the milk after its shelf-life?
  - Pasteurization (72°C, 15s)
    - Destroys all pathogens and most spoilage microbes
- So what is the shelf-life of fluid milk based on?
  - Remaining spoilage microorganisms
  - Enzymes

# Proteases in fluid milk

- Native and/or produced by spoilage microbes
- Are heat stable (survive pasteurization)
- Cause age gelation (Proteolysis)
- Limit shelf life
- Can be inactivated at Ultra-High Temperatures (quality is reduced)

Can proteases be inactivated by ultrasound?? (Vercet et al., 2000)

### Limitations to ultrasound

- Insufficient for considerable inactivation
  - Needs to be combined with heat, pressure etc. (Earnshaw et al., 1995; Vercet et al., 2002)
- Qualitative implications
  - Can cause whey protein denaturation (Villamiel and de Jong, 2000)
  - Can affect sensory properties of milk (Riener et al., 2009)

What about thermosonication??

# **Our Research Objectives**

- Study the effect of ultrasound treatment (different amplitude and time combinations) in combination with heat on
  - Protease activity in milk
  - Rheological properties of milk
  - Sensory properties of milk

# Experimental Design

- Protease Source: *Staphylococcus aureus*
- Milk pasteurized skim, reduced-fat (2%) and whole milk
- Preheating to  $60^{\circ}C$
- Sonication (20kHz) amplitude 160, 170, & 180 μm
- Sonication time 1, 2, and 2.5 min

#### **Protease Activity Azocasein method** (Christen and Marshall, 1984)





#### **Effect of Amplitude and Time**

#### **Effect of Fat Content of Milk**



\* No significant difference

#### **Rheological Properties** (Rheometer)

#### **Effect of Sonication on Rheological Properties**

| Milk-treatment<br>(180µm, 2.5 min) | Average<br>viscosity,<br>Ns/m <sup>2</sup> | Consistency<br>coefficient,<br>Pa.s <sup>n</sup> | Flow behavior<br>index |
|------------------------------------|--------------------------------------------|--------------------------------------------------|------------------------|
| Skim control                       | 0.0011                                     | 0.0013                                           | 0.98                   |
| Skim sonicated                     | 0.0011                                     | 0.0014                                           | 0.96                   |
| Reduced-fat control                | 0.0013                                     | 0.0017                                           | 0.95                   |
| Reduced-fat sonicated              | 0.0014                                     | 0.0019                                           | 0.96                   |
| Whole control                      | 0.0013                                     | 0.0020                                           | 0.94                   |
| Whole sonicated                    | 0.0013                                     | 0.0015                                           | 0.97                   |

No significant differences (P<0.05)

### **Sensory Evaluation**

# Effect of Sonication on Sensory Properties (n=2; expert dairy judging panelists)

| Milk:                            |                         | Sensory  | Consumer |                  |   |               |     |  |
|----------------------------------|-------------------------|----------|----------|------------------|---|---------------|-----|--|
| sonicated at                     | Plastic /burnt /rubbery |          |          | Cooked (custard) |   | Accept. (odor |     |  |
| 180µm                            |                         |          |          |                  |   | attributes)   |     |  |
| 2.5min                           |                         |          |          |                  | 1 | 1             |     |  |
|                                  | S                       | <b>D</b> | P        | S                | D | P             |     |  |
| Skim                             |                         | X        |          | X                |   |               | Yes |  |
| Reduced-fat                      |                         | X        |          |                  |   | X             | No  |  |
| Whole                            |                         |          |          |                  |   | X             | No  |  |
| S-Slight D-Definite P-Pronounced |                         |          |          |                  |   |               |     |  |

Pyrolysis of volatile and non-volatile organic compounds at the collapsing bubble? (Neppolian et al., 2004)

# Summary of Results



- Thermosonication (60°C, 180µm, 2.5min) treatment
  - decreased protease activity in skim, 2%, and whole milk
  - did not affect rheological properties of milk
  - caused undesirable odors in 2% and whole milk

### Further Research

- Modify treatments
  - Higher amplitude, shorter time
- Sensory
  - Larger panel, untrained panelists
- Extended storage study
- Compare proteases from different sources
- Investigate impact of fat content on aroma compounds
- Investigate the effect on raw milk
- Evaluate cost/energy efficiency of optimized conditions

# Conclusions

- The food and dairy industries have a variety of uses for ultrasound
- Thermosonication may inactivate protease and extend the shelf-life of milk
- Conditions must be optimized to reduce off aromas/flavor before commercialization is an option



# Thank you!!!

## Got milk?? Got Questions?



# Effect of Preheating (no holding time) – enzyme in skim milk

