Servo-Driven Ultrasonic Welding of Semicrystalline Thermoplastics

Avi Benatar^{*} and Abbass Mokhtarzadeh Plastics and Composites Joining Lab Dept. of Material Science and Engineering The Ohio State University

* benatar.1@osu.edu, 614-292-1390

Plastics and Composites Joining Laboratory

Outline

- Welding Engineering Program
- Plastics and Composites Joining Lab
- Fundamentals of Ultrasonic Welding
- Dual-Pressure Ultrasonic Welding
- Servo-Driven Ultrasonic Welding
- Summary and Future Work
- Acknowledgments

Welding Engineering Program

- The only ABET accredited Welding Engineering Program in US.
- Recently merged with Material Science and Eng.
- Located at the Edison Joining Technology Center housing both OSU Welding Engineering and EWI.
- Seven faculty specializing in processes, welding metallurgy, design, NDE and plastics and composites joining.
- Over 100 undergraduate students.
- About 50 graduate students.
- Student are in high demand with one of the highest starting pay in the college of engineering.

Plastics and Composites Joining Laboratory

Plastics & Composites Joining Lab.

- The only academic group in the US specializing in joining of plastics and polymeric composites.
- Wide range of welding equipment including ultrasonic, hot plate, hot gas, spin, vibration, RF, microwave, induction, resistance, laser and laser diode, and infrared.
- Polymer and composite processing equipment.
- Material and joint characterization equipment.
- Mechanical testing, and more...
- Advanced computational analysis and design capabilities including FE modeling of viscoelastic material for thermal and residual stress prediction.

Fundamentals of Ultrasonic Welding

 Concentrate heating at weld interface with use of energy director or interference.

Fundamentals of Ultrasonic Welding

- Consider ultrasonic welding of energy director joint.
- During welding a static force is applied with superimposed vibration.

Fundamentals of Ultrasonic Welding

- Ultrasonic welding is a complex process made up of five distinct yet highly coupled subprocesses.
- Mechanics and vibration of the parts.
- Viscoelastic heating of thermoplastic and heat transfer.
- Squeeze flow of energy director.
- Intermolecular diffusion and chain entanglement.
- Cooling and resolification.

Plastics and Composites Joining Laboratory

Mechanics and Vibration of Parts

Polymers are viscoelastic materials.

Mechanics and Vibration of Parts

• Polymers subjected to sinusoidal loading have a dynamic modulus.

$$E^* = E' + iE''$$

Mechanics and Vibration of Parts

 Lumped parameter model m 1 **k** 1 - b 1 4 -Horn Booster Horn **m** 2 k₂ ⊥b₂ Fixture 11111111111 m 3 Base L∔ b₃ **Plastics and Composites Joining Laboratory**

Viscoelastic Heating & Heat Transfer

Heat dissipation due to loss modulus.Measure dynamic modulus.

Viscoelastic Heating & Heat Transfer

Viscoelastic Heating & Heat Transfer

Squeeze Flow

• Molten energy director flows due to the applied pressure/force.

Squeeze Flow

- However, polymer melts are also viscoelastic resulting in elongational flow, similar to elastic materials.
- Flow is complex with static force and dynamic force affecting the flow.

Intermolecular Diffusion

Intermolecular Diffusion

Intermolecular Diffusion

Cooling and Resolidification

- Formation of residual stresses.
- Final microstructure spherulite formation for semicrystalline polymers.

Cooling and Resolidification

• Ultrasonic welding is a rapid cooling process resulting in high residual stresses and amorphous structure.

Fundamentals of Ultrasonic Welding

• High speed video shows that flow occurs in stepwise fashion.

Plastics and Composites Joining Laboratory

Fundamentals of Ultrasonic Welding

Fundamentals of Ultrasonic Welding

• From high speed video it was also observed that melt streams out rather than flow regularly.

Fundamentals of Ultrasonic Welding

- Semicrystalline polymers experience abrupt transition at melting resulting in ejection of melt during US Welding (observed using high speed video).
- With dual-pressure ultrasonic welding it may be possible to reduce the pressure once melting occurs to reduce melt ejection.
- Servo-driven US welder using velocity control may be used to regulate squeeze flow of molten energy director.

Plastics and Composites Joining Laboratory

 Ultrasonic welding using single pressure and dual-pressure of polyamide 6 was studied using AWS G1.2 standard test sample.

Dual-Pressure Ultrasonic Welding

- Dukane 40 kHz (model 40A700) dualpressure ultrasonic welder with UltraCom Microcomputer System (model 43A300).
- Single pressure welding conditions:

	Weld Time	Vibration	Cylinder	Weld		
		Amplitude	Pressure	Force		
	(sec)	(µm-pp)	(kPa)	(N)		
Case 1	0.2 - 1.0	5.9	207	258		
Case 2	0.8	4.1 - 9.4	207	258		
Case 3	0.8	9.4	138 - 345	182 - 409		
For all Cases: Hold time $= 2$ sec.						
astics and Composites Joining Laboratory						

Dual-Pressure Ultrasonic Welding

Dual-pressure welding conditions:

	Pressure-2	Force-2	Weld Time-2	
	(kPa)	(N)	(sec)	
Case 1	172	220	0 - 0.8	
Case 2	379	447	0 - 0.4	
	Pressure-1 = 310 kPa, (Force-1 of 371 N),			
For all Cases	Weld Time- $1 = 0.7$ sec,			
FOI all Cases	Vibration Amplitude = 9.4 μ m-pp,			
	Hold Time = 2 sec.			

P

 Effect of weld time at the second lower pressure on weld strength for cylinder pressure-1 of 310 kPa with weld time-1 of 0.7 sec. and cylinder pressure-2 of 172 kPa with vibration amplitude of 9.4 µm-pp, and hold time of 2 sec.

Dual-Pressure Ultrasonic Welding

 Effect of weld time at the second higher pressure on weld strength for cylinder pressure-1 of 310 kPa, weld time-1 of 0.7 sec., cylinder pressure-2 of 379 kPa, vibration amplitude of 9.4 µm-pp, and hold time of 2 sec.

- For single pressure ultrasonic welding, a maximum weld strength of 74% of the bulk strength could be achieved.
- For dual-pressure using a lower second cylinder resulted in slightly lower weld strength than single pressure ultrasonic welding.
- For dual-pressure using a higher second cylinder pressure the maximum weld strength was 70% of the bulk strength.

Servo-Driven Ultrasonic Welding

• Servo-Driven ultrasonic welding of HDPE was studied using AWS G1.2 standard test sample.

- Dukane 20 kHz iQ Servo-Driven Ultrasonic Welder to weld energy director and shear joints.
- For energy directors, studied effects of velocity, amplitude of vibration and collapse on weld strength.
- Preliminary work with velocity profiling.

Servo-Driven Ultrasonic Welding

• Effects of collapse and velocity on weld strength for energy director joints.

 Low velocity results in strongest joints – squeeze flow is more gradual resulting in less ejection from joint area.

Servo-Driven Ultrasonic Welding

 For the applied amplitude of vibration of 70 μm peakto-peak, a velocity of 1.5 mm/sec provides, on average, the best match with melting and flow of energy director resulting in a peak in strength for all collapse distances.

• Excellent repeatability of collapse distance from sample to sample.

Servo-Driven Ultrasonic Welding

• Applied force varies in order to maintain constant velocity.

• Lower velocity results in longer weld time, lower forces and more part marking. May require modification of control algorithm.

Servo-Driven Ultrasonic Welding

 Lower velocity results in longer weld time, lower forces and more part marking. May require modification of control algorithm.

• Effects of amplitude of vibration and velocity on weld strength for energy director joints.

Servo-Driven Ultrasonic Welding

• Low velocity results in strongest joints.

• For every amplitude of vibration there is an average velocity with peak strength.

Servo-Driven Ultrasonic Welding

- There is an infinite number of possible amplitude profiles that can be used for energy director joints.
- Preliminary work with decreasing velocity resulted in slightly lower weld strength.

 Preliminary work with increasing velocity resulted in about the same weld strength as with constant velocity.

Servo-Driven Ultrasonic Welding

• Effects of amplitude of vibration and velocity on weld strength for shear joints.

 Constant velocity of 0.254 mm/sec results in consistent melt and flow and strongest joint.

Servo-Driven Ultrasonic Welding

• Constant velocity of 0.254 mm/sec results in consistent melt and flow and strongest joint.

• Constant velocity of 0.254 mm/sec results in consistent force after initial peak.

Servo-Driven Ultrasonic Welding

- There is an infinite number of possible amplitude profiles that can be used for shear joints.
- Preliminary work with decreasing velocity resulted in slightly lower weld strength.
- Preliminary work with increasing velocity also resulted in slightly lower weld strength.

Summary and Future Work

- Semicrystalline polymers experience abrupt transition at melting resulting in ejection of melt during US Welding (observed using high speed video).
- Dual-pressure ultrasonic welding with either higher or lower second pressure results in no improvement in weld strength.
- Servo-driven ultrasonic welder allows precise control of velocity and an infinite number of velocity profiles.

Plastics and Composites Joining Laboratory

Summary and Future Work

- For energy director joints, lower velocity results in stronger welds.
- For energy director joints, for each amplitude of vibration there is a velocity that best matches, on average, melting and flow of energy director.
- For energy director joints, collapse distance is very repeatable from sample to sample indicating potential for higher final collapse precision and more consistent weld quality – future work.

Summary and Future Work

- For shear joints, a constant velocity of 0.254 mm/sec. resulted in strongest welds and appears to be optimum for melting at the interface and flow of melt.
- For energy director and shear joints, more work is needed to understand and evaluate the effects of velocity profiling.
- More work is needed to evaluate other materials – melt and flow are material dependent.

Plastics and Composites Joining Laboratory

Acknowledgments

- Thanks to Exxon Mobile Chemical for donation of the HDPE.
- Thanks to Dukane for donation of the 40 kHz ultrasonic welder.
- Thanks to Dukane for loan of the servo-driven ultrasonic welder.

