41st Ultrasonic Industry Association Symposium, San Francisco, CA.

Acoustic radiation force creep and shear wave dispersion method for elasticity imaging

Carolina Amador, <u>Matthew W. Urban</u>, Shigao Chen and James F. Greenleaf

Ultrasound Research Laboratory, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA

Mayo Clinic Ultrasound Laboratory Overview

Research Areas

- Shearwave Dispersion Ultrasound Vibrometry (SDUV)
- Vibro-acoustography
- Ultrasound imaging

Mayo Clinic

- Rich history of clinical collaboration
- Diverse patient population for translation of research techniques.

Medical Imaging Modalities

X-ray Computed Tomography Contrast: Mass density

Ultrasound Imaging Contrast: Bulk Modulus

Magnetic Resonance Imaging Contrast: Proton Density, Relaxation Times

PET/SPECT Contrast: Radioactive Decay

Medical Imaging Modalities

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, "Magnetic Resonance Elastography: A Review," Clinical Anatomy, vol. 23, pp. 497-511, Jul 2010.

Palpation and its Role in Medicine

- Palpation is fundamental to the practice of medicine.
- The premise of palpation is that diseased tissue "feels" different than normal surrounding tissue, typically the diseased tissue is stiffer.
- Studies have shown a positive correlation between pathology and stiffer tissue in the breast, prostate, liver, and arteries.

Palpation and Elasticity Imaging

- There are some limitations of palpation:
 - Subjective
 - Dependent on proficiency of examiner
 - Non-reproducible
 - Not sensitive to small or deep lesions
- The goal of any elasticity imaging modality therefore is to produce images that are:
 - Quantitative
 - Reproducible
 - High resolution
 - Noninvasive

Shear wave elasticity imaging

- Introduce shear wave to tissue (external mechanical actuator, ultrasound radiation force)
- Measure shear wave speed with conventional imaging methods (MRI, Ultrasound)
- <u>Shear wave speed depends only on mechanical</u> properties of tissue
- Mechanical properties are estimated by assuming mechanical models (elastic models, viscoelastic models)

Shear wave elasticity imaging

• Measurements are local (usually 5 - 10 mm² regions of interest)

B-scan image of the kidney with Verasonics ultrasound system equipped with linear curved array transducer.

General background

- Viscoelastic behavior is usually studied by:
 - 1. Static tests

0

- Creep test
 - Strain under step stress
- Stress relaxation test
 - Stress under step strain

To quantify the viscoelastic properties, a model is usually fit to the data

General background

Viscoelastic behavior is usually studied by:

- 2. Dynamic tests
 - Oscillatory stress/strain applied
 - For a sinusoidal strain in time, the stress response in also sinusoidal with a phase shift (δ)

- The <u>dynamic modulus</u>, G^{*}, is a function of frequency and it is a <u>complex</u> variable $\rightarrow \underline{G^*(\omega)} = \underline{G}_{\underline{s}}(\omega) + \underline{iG}_{\underline{l}}(\omega)$
 - $G_{s}(\omega)$ is the elastic or storage modulus
 - $G_{I}(\omega)$ " is the viscous or loss modulus
 - The ratio of $G_{I}(\omega)$ to $G_{s}(\omega)$ is the loss tangent or tan(δ)
- Capable of studying viscoelastic response between 10⁻⁸ to 10³ seconds
 - Limitations:
 - Measure one frequency at a time
 - Specialized instruments and techniques

Time vs. frequency measurements

- Creep test \rightarrow static test to measure viscoelastic behavior
 - Time domain
 - Study viscoelastic behavior from 10 seconds to 'days'
 - Requires a viscoelastic model (Kelvin-Voigt, Maxwell, etc..)

- Creep test will be ideal if
 - The output is converted to frequency domain (complex modulus)
 - No model is required
 - The material creep response is measured early in time

Complex modulus related to time-creep compliance

- Definition: <u>creep compliance</u>, J, is the <u>ratio</u> of <u>strain</u> and <u>stress</u> in a creep test.
- The complex modulus, $G^*(\omega)$, is related to the complex creep compliance, $J(\omega)$, by a convolution¹

$$\varepsilon(t) = \int_{0}^{t} J(t-\xi) \frac{\partial \sigma(\xi)}{\partial \xi} d\xi \quad \left\langle \begin{array}{c} \text{Fourier} \\ \text{Transform (FT)} \end{array} \right\rangle \quad \therefore G^{*}(\omega) = \frac{1}{\left(i\omega\right) FT\left[J(t)\right]}$$

- The problem is that FT(J(t)) is not a convergent integral because J(t) grows with increasing time
 - <u>Solution²</u>:
 - J(t) grows with increasing time but its second derivate vanishes at large time
 - <u>Complex modulus is related to the Fourier transform of the creep</u> compliance second derivative

¹Findley, 1976

²Evans et al. Physical Review, 2009.

Acoustic radiation force creep

 Besides shear wave excitation, acoustic radiation force has been used to study tissue steady-state response, assuming that the force is a temporal step function

Acoustic radiation force creep

- Purpose is to use acoustic radiation force to induce tissue creep lacksquareresponse
- Use time-creep compliance conversion formula to get complex modulus → model-free method

Creep Compliance:
$$J = \frac{\varepsilon}{\sigma} = \beta \cdot u(t)$$

. $G^*(\omega) = \frac{1}{(i\omega) FT[J(t)]}$ $G(\omega) = \frac{1}{\beta} \frac{1}{(i\omega) FT[u(t)]}$

Output from conversion formula (estimated modulus, C) is scaled • by a factor β of the complex modulus, G, $\tan(\delta) = \frac{\beta \cdot G_l(\omega)}{\beta \cdot G_l(\omega)}$

$$C^{*}(\omega) = \beta \left[G_{s}(\omega) + iG_{l}(\omega)\right]$$

Calibrate complex modulus with SDUV

• The wavenumber *k* and the shear modulus *G* are simply linked through the shear wave propagation equation

$$G =
ho rac{\omega^2}{k^2}$$
 ho = density ω = frequency

• In the case of linear viscoelastic medium, the shear modulus is complex, $G = G_s + iG_l$, and the wavenumber is complex, $k = k_r + ik_l$, then:

$$G_{s}(\omega) = \rho \omega^{2} \frac{k_{r}^{2} - k_{i}^{2}}{\left(k_{r}^{2} + k_{i}^{2}\right)^{2}}$$

c_s=shear wave speed

 $k_r = \omega/c_s$

 $= \alpha$

 α = shear wave attenuation

$$G_{l}(\omega) = -2\rho\omega^{2} \frac{k_{r}k_{i}}{\left(k_{r}^{2} + k_{i}^{2}\right)^{2}} \qquad k_{r}$$

Vappou, J., C. Maleke, et al. (2009). "Quantitative viscoelastic parameters measured by harmonic motion imaging." <u>Physics in Medicine and Biology</u> **54**(11): 3579-3594.

RFCreep and shearwave relation

- From radiation force creep, we can get the loss tangent or the ratio between G_I and G_s
- From shear wave dispersion, we can get the real wave number, k_r (k_r = ω/c_s).
- Then, if we know tan(δ) and k_r, we can estimate k_i (shear wave attenuation α)

$$\frac{G_s(\omega)}{G_l(\omega)} = \frac{k_r^2 - k_i^2}{2k_r k_i} \qquad k_i = k_r \left(\frac{1}{\tan(\delta)} - \sqrt{1 + \left(\frac{1}{\tan(\delta)}\right)^2}\right)$$

 If both k_r and k_i are known, we can get the complex modulus G*

Materials and Method

- Two homogeneous elasticity phantoms (custom-made by CIRS, Inc., Norfolk, VA) and one excised swine kidney were used in this study.
- A Verasonics V-1 ultrasound system (Verasonics, Redmond, WA) equipped with a L7-4 linear array transducer.
- Creep displacement is induced by acoustic radiation force to estimate tan(δ) and shear wave dispersion ultrasound vibrometry is used to calculate the model-free complex shear modulus

Materials and Method

Model-Free modulus

$$G_{s}(\omega) = \rho \omega^{2} \frac{k_{r}^{2} - k_{i}^{2}}{\left(k_{r}^{2} + k_{i}^{2}\right)^{2}}$$

$$G_{l}(\omega) = -2\rho\omega^{2} \frac{k_{r}k_{i}}{\left(k_{r}^{2} + k_{i}^{2}\right)^{2}}$$

Radiation force creep

$$k_{i} = k_{r} \left(\frac{1}{\tan\left(\delta\right)} - \sqrt{1 + \left(\frac{1}{\tan\left(\delta\right)}\right)^{2}} \right)$$

Shear wave

$$k_r = \omega/c_s$$

Results – Creep Displacement

Results – Relative Modulus

Results – Loss Tangent

Results – Loss Tangent

Results – Excised Kidney

Conclusion

 Presented a model to measure viscoelastic properties by studying creep response induced by acoustic radiation force

• Advantages:

- Model free!
- Fast acquisition (10 ms), local measurements (3 x 1 mm²)
- Measurements over a wide frequency range with high resolution
 - Low frequencies could be explored if creep is maintained for longer periods
- Robust approach to estimate complex modulus by using the analytic solution to the complex compliance vs. modulus constitutive equation
- Push beams are compatible with Doppler pulse, therefore this method is compatible with most ultrasound scanners.

Acknowledgments

 The project described was supported by grants R01EB002167 and R01EB002640 from the National Institute of Biomedical Imaging and Bioengineering.

Mayo Clinic Ultrasound Research Laboratory

