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Mayo Clinic Ultrasound Laboratory Overview

• Research Areas
Sh Di i• Shearwave Dispersion 
Ultrasound Vibrometry 
(SDUV)
Vib t h• Vibro-acoustography

• Ultrasound imaging

• Mayo Clinic• Mayo Clinic 
• Rich history of clinical 

collaboration
Di ti t l ti• Diverse patient population 
for translation of research 
techniques.



Medical Imaging Modalities

X-ray Computed Tomography
Contrast: Mass density

Magnetic Resonance Imaging
Contrast: Proton Density, 

Relaxation TimesRelaxation Times

Ult d I i

3

Ultrasound Imaging
Contrast: Bulk Modulus PET/SPECT

Contrast: Radioactive Decay



Medical Imaging Modalitiesg g

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, "Magnetic Resonance Elastography: A Review," Clinical Anatomy, vol. 23, pp. 497-511, Jul 2010.



Palpation and its Role in Medicinep

• Palpation is fundamental to the practice of p p
medicine.

• The premise of palpation is that diseased tissue p p p
“feels” different than normal surrounding tissue, 
typically the diseased tissue is stiffer.

• Studies have shown a positive correlation between 
pathology and stiffer tissue in the breast, prostate, 
liver and arteriesliver, and arteries.



Palpation and Elasticity Imagingp y g g

• There are some limitations of palpation:
• Subjective• Subjective
• Dependent on proficiency of examiner
• Non-reproducibleNon reproducible
• Not sensitive to small or deep lesions

• The goal of any elasticity imaging modality• The goal of any elasticity imaging modality 
therefore is to produce images that are:

• Quantitative
• Reproducible
• High resolution
• Noninvasive



Sh l ti it i iShear wave elasticity imaging
• Introduce shear wave to tissue (external (

mechanical actuator, ultrasound radiation force)
• Measure shear wave speed with conventional 

imaging methods (MRI, Ultrasound)
• Shear wave speed depends only on mechanical 

properties of tissue
• Mechanical properties are estimated by 

assuming mechanical models (elastic models, 
viscoelastic models)



Sh l ti it i iShear wave elasticity imaging
• Measurements are local (usually 5 – 10 
mm2 regions of interest)g )
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B-scan image of the kidney with 
Verasonics ultrasound system equipped 
with linear curved array transducer.
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General backgroundg
• Viscoelastic behavior is usually studied by:

1. Static tests
• Creep test

• Strain under step - stress

• Stress relaxation test
• Stress under step – strain

• To quantify the viscoelastic properties, a model is usually fit to the 
datadata
• Limitations: 

• Solutions for these models are generally for step – stress/strain 
which are analytically convenient but experimentally not possible

• Usually, the first reliable time-point is around 10 seconds
• There are some materials where their viscoelastic behavior occurs 

early in time (< 10 seconds)

Maxwell Voigt Linear Solid



General background
• Viscoelastic behavior is usually studied by:

2. Dynamic tests
– Oscillatory stress/strain applied
– For a sinusoidal strain in time, the stress response in also sinusoidal with a 

phase shift ()
Strain

Time
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– The dynamic modulus, G*, is a function of frequency and it is a complex
variable  G*() = Gs() + iGl()
• Gs() is the elastic or storage modulus
• G ()’’ is the viscous or loss modulus• Gl()  is the viscous or loss modulus
• The ratio of Gl() to Gs() is the loss tangent or tan()

– Capable of studying viscoelastic response between 10-8 to 103 seconds
• Limitations:

– Measure one frequency at a time
– Specialized instruments and techniques



Time vs. frequency measurements

• Creep test  static test to measure viscoelastic behavior
• Time domain
• Study viscoelastic behavior from 10 seconds to ‘days’
• Requires a viscoelastic model (Kelvin-Voigt,Maxwell, etc..)

• Creep test will be ideal if
The o tp t is con erted to freq enc domain (comple mod l s)• The output is converted to frequency domain (complex modulus)

• No model is required
• The material creep response is measured early in time



Complex modulus related to time-creep compliancep p p
• Definition: creep compliance, J, is the ratio of strain and stress in a creep test.

• The complex modulus, G*(ω), is related to the complex creep compliance, J(ω), 
by a convolution1by a convolution
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Transform (FT)

• The problem is that FT(J(t)) is not a convergent integral because J(t) grows with 
increasing time

• Solution2:
• J(t) grows with increasing time but its second derivate vanishes at 

large time
• Complex modulus is related to the Fourier transform of the creep 

compliance second derivative
1Findley, 1976
2Evans et al. Physical Review, 2009.



Acoustic radiation force creep
• Besides shear wave excitation, acoustic radiation force has been used 

to study tissue steady-state response, assuming that the force is a 
temporal step function

B-mode Image
0

Linear array transducer

temporal step function
• Focused ‘pushing beams’

Pulse
• Single tracking beams
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Acoustic radiation force creep

• Purpose is to use acoustic radiation force to induce tissue creep 
responsep

• Use time-creep compliance conversion formula to get complex 
modulus  model-free method
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• Output from conversion formula (estimated modulus, C) is scaled 
by a factor  of the complex modulus, G,
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Calibrate complex modulus with 
SDUVSDUV

• The wavenumber k and the shear modulus G are simply linked 
thro gh the shear a e propagation eq ationthrough the shear wave propagation equation

 = density2

G 

• In the case of linear viscoelastic medium the shear modulus is

 = frequency2G
k



In the case of linear viscoelastic medium, the shear modulus is 
complex, G = Gs + iGl, and the wavenumber is complex, k = kr + iki, 
then:
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Vappou, J., C. Maleke, et al. (2009). "Quantitative viscoelastic parameters measured by harmonic motion imaging.“
Physics in Medicine and Biology 54(11): 3579-3594.
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RFCreep and shear a e relationRFCreep and shearwave relation
• From radiation force creep, we can get the loss tangent 

or the ratio between G and Gor the ratio between Gl and Gs

• From shear wave dispersion, we can get the real wave 
number, kr (kr = /cs).number, kr (kr  /cs).

• Then if we know tan() and k we can estimate k• Then, if we know tan() and kr, we can estimate ki
(shear wave attenuation )
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• If both kr and ki are known, we can get the complex 
modulus G*



M t i l d M th dMaterials and Method
• Two homogeneous elasticity phantoms g y p

(custom-made by CIRS, Inc., Norfolk, VA) and 
one excised swine kidney were used in this 
studystudy.

• A Verasonics V-1 ultrasound system 
(Verasonics Redmond WA) equipped with a(Verasonics, Redmond, WA) equipped with a 
L7-4 linear array transducer.

• Creep displacement is induced by acousticCreep displacement is induced by acoustic 
radiation force to estimate tan() and shear 
wave dispersion ultrasound vibrometry is used 

l l h d l f l hto calculate the model-free complex shear 
modulus 



Materials and Method
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Results – Creep Displacement

Phantom 1 Displacement Phantom 2 Displacement



Results – Relative Modulus

Phantom 1 Relative Modulus Phantom 2 Relative Modulus



Results – Loss Tangent

Phantom 1 Loss Tangent Phantom 2 Loss Tangent



Results – Loss Tangent



Results Shear Wave Velocity Dispersion Shear Wave Attenuation

Ph t 1Phantom 1
Kelvin-Voigt

Model-free 
Complex Modulus

Voigt Model-based 
Complex Modulus   iGG *

G* = Complex 
shear modulus
G = Shear modulus

G = 1.13 kPa

 = Viscosity

= 1 84 Pa s = 1.84 Pa.s



Results – Excised Kidney

Creep Displacement Loss Tangent



Results
E i d

Shear Wave Velocity Dispersion Shear Wave Attenuation

Excised 
Kidney

Kelvin-Voigt

Model-free Complex Modulus Voigt Model-based Complex Modulus

   iGG *

G* C

G = 4.3 kPa
G* = Complex 
shear modulus
G = Shear modulus

 = Viscosity = 12 7 Pa s scos y  = 12.7 Pa.s



C l iConclusion
• Presented a model to measure viscoelastic properties by studying 

creep response ind ced b aco stic radiation forcecreep response induced by acoustic radiation force

• Advantages:• Advantages:
• Model free!
• Fast acquisition (10 ms), local measurements (3 x 1 mm2)

M t id f ith hi h• Measurements over a wide frequency range with high 
resolution

• Low frequencies could be explored if creep is maintained 
for longer periodsfor longer periods

• Robust approach to estimate complex modulus by using the 
analytic solution to the complex compliance vs. modulus 
constitutive equationq

• Push beams are compatible with Doppler pulse, therefore this 
method is compatible with most ultrasound scanners.
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