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Medical Imaging Modalities

X-ray Computed Tomography Magnetic Resonance Imaging
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Medical Imaging Modalities
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X-ray/CT Ultrasound Elastography

Y. K. Mariappan, K. J. Glaser, and R. L. Ehman, "Magnetic Resonance Elastography: A Review," Clinical Anatomy, vol. 23, pp. 497-511, Jul 2010.




Palpation and its Role in Medicine

 Palpation is fundamental to the practice of
medicine.

* The premise of palpation is that diseased tissue
“feels” different than normal surrounding tissue,
typically the diseased tissue is stiffer.

 Studies have shown a positive correlation between
pathology and stiffer tissue in the breast, prostate,
liver, and arteries.




Palpation and E

e There are some
» Subjective

asticity Imaging

imitations of palpation:

» Dependent on proficiency of examiner
* Non-reproducible
* Not sensitive to small or deep lesions

* The goal of any elasticity imaging modality
therefore is to produce images that are:

* Quantitative
* Reproducible

* High resolution

 Noninvasive




Shear wave elasticity imaging

* Introduce shear wave to tissue (external
mechanical actuator, ultrasound radiation force)

* Measure shear wave speed with conventional
imaging methods (MRI, Ultrasound)

» Shear wave speed depends only on mechanical
properties of tissue

* Mechanical properties are estimated by
assuming mechanical models (elastic models,
viscoelastic models)




Shear wave elasticity imaging

* Measurements are local (usually 5 — 10
mm? regions of interest)

B-scan image of the kidney with
Verasonics ultrasound system equipped
with linear curved array transducer.




General background

Viscoelastic behavior is usually studied by:

1. Static tests

*  Creep test
Strain under step - stress

Stress relaxation test
Stress under step — strain

To quantify the viscoelastic properties, a model is usually fit to the
data
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General background

Viscoelastic behavior is usually studied by:

2. Dynamic tests
—  Oscillatory stress/strain applied
— For a sinusoidal strain in time, the stress response in also sinusoidal with a

e £(t) = sin(awt) ~ exp(iat)

Strain /\//\/
: Time

Stress

_ O

e G*=—=exp(id)
&

—  The dynamic modulus, G*, is a function of frequency and it is a complex
variable 2 G*(w) = G () + iG|(w)

G4(w) is the elastic or storage modulus
Gl(‘”)” is the viscous or loss modulus
The ratio of Gl(‘”) to Gs(‘”) is the loss tangent or tan(d)

—  Capable of studying viscoelastic response between 10-8 to 103 seconds
Limitations:
—  Measure one frequency at a time
—  Specialized instruments and techniques




Time vs. frequency measurements

» Creep test - static test to measure viscoelastic behavior
* Time domain
« Study viscoelastic behavior from 10 seconds to ‘days’
* Requires a viscoelastic model (Kelvin-Voigt,Maxwell, etc..)

* Creep test will be ideal if
* The output is converted to frequency domain (complex modulus)
* No model is required
« The material creep response is measured early in time




Complex modulus related to time-creep compliance

Definition: creep compliance, J, is the ratio of strain and stress in a creep test.

The complex modulus, G*(w), is related to the complex creep compliance, J(w),
by a convolution’

1
o (i) FT[I(0)]

e(t) = j 1(t-6) 278y ) .G ()=

The problem is that FT(J(t)) is not a convergent integral because J(t) grows with
increasing time

» Solution?;

« J(t) grows with increasing time but its second derivate vanishes at
large time

« Complex modulus is related to the Fourier transform of the creep
compliance second derivative

'Findley, 1976

2Evans et al. Physical Review, 2009.




Acoustic radiation force creep

* Besides shear wave excitation, acoustic radiation force has been used
to study tissue steady-state response, assuming that the force is a
temporal step function

Linear array transducer . g
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Acoustic radiation force creep

 Purpose is to use acoustic radiation force to induce tissue creep
response

« Use time-creep compliance conversion formula to get complex
modulus -

- pu(t)

Creep Compliance: J =

k2
o)
1 1 1

.G () = G(w) =

(i0) FT[3 ()] A (i) FT[u(t)]

« QOutput from conversion formula (estimated modulus, C) is scaled
by a factor 3 of the complex modulus, G,

)= | G,(0)+iG (w) |




Calibrate complex modulus with
SDUV

* The wavenumber k and the shear modulus G are simply linked
through the shear wave propagation equation

C()Z p = density

k?

G=p

o = frequency

* In the case of linear viscoelastic medium, the shear modulus is
complex, G = G + iG,, and the wavenumber is complex, k = k, + ik,
then: e

2 kr T ki c,=shear wave speed

2
(kZ+k?) k= ole,
o = shear wave attenuation
2 ' ki = a
G (w)=-2pw e pwe
(KZ +k7)

Vappou, J., C. Maleke, et al. (2009). "Quantitative viscoelastic parameters measured by harmonic motion imaging.*
Physics in Medicine and Biology 54(11): 3579-3594.

yol0)




RFCreep and shearwave relation

* From radiation force creep, we can get the loss tangent
or the ratio between G, and G,

* From shear wave dispersion, we can get the real wave
number, k. (k. = w/c).

 Then, if we know tan(6) and k., we can estimate k;
(shear wave attenuation o)

Gs(a) _krz_ki2 k( 1 1

= k. — il
G, (a) 2k k. \tan(5) J{tan

- If both k. and k; are known, we can get the complex
modulus G*




Materials and Method

* Two homogeneous elasticity phantoms
(custom-made by CIRS, Inc., Norfolk, VA) and
one excised swine kidney were used in this
study.

* A Verasonics V-1 ultrasound system
(Verasonics, Redmond, WA) equipped with a
L7-4 linear array transducer.

* Creep displacement is induced by acoustic
radiation force to estimate tan(d) and shear
wave dispersion ultrasound vibrometry is used
to calculate the model-free complex shear
modulus




Materials and Method

Model-Free modulus
ki -k
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Results — Creep Displacement
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Results — Relative Modulus

Phantom 1 Relative Modulus « 10° Phantom 2 Relative Modulus

—¥—Push length 1.6 ps
—S—Push length 3.2 pus
— — 8D

(=]
N =l

s

L

o+ n
w - en

o2
2

—¥—Push length 1.6 ps
| —©—Push length 3.2 us
— —SD

100 200 300 400 500 0 100 200 300 400 500
Frequency, Hz Frequency, Hz

=9
=3

£ £
@ gl O
= —

=
'g =
2 o

=
D O
E 3 o
Pt ~
c | =
sl =]
n 7]
S 7 2
c C
& I D

(1




Results — Loss Tangent

Phantom 1 Loss Tangent Phantom 2 Loss Tangent
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Results — Loss Tangent
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Res u |tS Shear Wave Velocity Dispersion Shear Wave Attenuation
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Results — Excised Kidney
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Results

EXxcised
Kidney

Kelvin-Voigt
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Conclusion

* Presented a model to measure viscoelastic properties by studying
creep response induced by acoustic radiation force

« Advantages:
Model free!
Fast acquisition (10 ms), local measurements (3 x 1 mm?)

Measurements over a wide frequency range with high
resolution

* Low frequencies could be explored if creep is maintained
for longer periods

Robust approach to estimate complex modulus by using the
analytic solution to the complex compliance vs. modulus
constitutive equation

Push beams are compatible with Doppler pulse, therefore this
method is compatible with most ultrasound scanners.
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