

SOI capacitively-transduced RF MEMS resonators for biosensing applications

Ivan F. Rivera, Jing Wang

Department of Electrical Engineering University of South Florida, USA

Introduction

- High yield capacitive transduced RF MEMS resonators were built using SOI technology for mass sensing applications
- Air, refilled high K dielectric, and fully solid high K dielectric gaps will be studied
- Highly selective functionalized MEMS biosensing platform using antibodyantigen interaction

Motivation

- Electrostatically transduced RF MEMS/NEMS Mechanical resonators have been widely used as mass sensors platforms
- High sensitivity and selectivity with a broad Limit of Detection make these devices ideal for biosensing applications
- >MEMS/NEMS technology is one of the fasted growing industries worldwide

Advantages of MEMS/NEMS resonators over other competitive technology					
	M/NEMS Resonator	Nanowires	Solid State Devices	QCM/SAW	Nano SPR
Read out accuracy	High	Medium	Medium	High	High
Limit of detection	ppt	ppt	ppb	ppb	ppb-ppt
Response time	sec	min	min	sec	sec
Manufacturability	YES	Hard	YES	YES	Hard
Miniaturization	YES	YES	YES	Hard	Hard

Simulation ➤ Using Coventorware, Advanced Design, MathLab, and COMSOL resonator values were approximated S-PARAMETERS Forward Transmission, dB $a = \frac{\sqrt{k_r m_r}}{Q\eta^2}$ 180 -160 -140 -120 -10C -80 -80 -60 -40 -20 $Q(air\ gap)$ Ao: Electrode Area $\mathcal{E}r$ dielectric constant of the device NOGAM 30.0kV x700 SE(M,LA0) do: gap between the disk and electrode Fabrication

Process flow for a solid gap resonator

Si SiO2 ALD Cr/Cu Au

E-beam evaporate a thin

BOE 6:1 wet SiO2 release

Cr/Cu seed layer

SOI Substrate with highly

Dry etching Si etching with

Deep reactive-ion etcher

ALD deposition of a high-

conductive device layer

- Atomically controlled thickness
- ► Low temperature process (~100 C°)
- ➤ Very conformal process
- ➤ High K dielectric materials

Future Work

- Highly selective capacitive-transduced biosensor
- ➤ CMOS compatible biosensor
- ➤ Microfluidic Lab-in-a-chip biosensor

SEM image of fabricated device

NSOR 30.0kV x1.10k SE(M.LA0)

