

What's Next?

Ultrasonic Signals and Whales with Adaptive Focus

Laura N. Kloepper

Biology of Odontocetes

Main research questions

Melon Movement

Echolocation for foraging

Biological Transducers

Odontocete **Basics**

Pneumatic sound generation

Beamwidths and angular resolution

Broadband Biosonar

Sound producing structures

Odontocete echolocation signals historically

Unique skull geometry

Biology of Odontocetes

Odontocete = Toothed Whale

72 known species

Sound generator in forehead

Uses fat filled melon as acoustic lens

Echolocation for foraging

Echolocation for foraging

Biological Transducers

From Madsen et al., 2005

Produce short, intense, broadband clicks

Beamwidths and angular resolution

Measured half power transmit and receive beamwidths for odontocetes are approximately 10 degrees.

but

Odontocetes have angular resolution of less than 2 degrees.

How do they do it?

Broadband Biosonar

Whales and dolphins are using broadband spectral information to image in ways we currently cannot.

The ratio of bandwidth to center frequency is typically greater than 1 for most odontocetes

Odontocete echolocation signals historically modeled as circular piston

 $\Theta = 3.2/(\pi d/\lambda)$

Assuming a circular piston
Where
Theta= Beam Width (radians)
d= size of aperture (10 cm)
lambda= wavelength of signal

Width of the beam is always a function of frequency

From Au, 1978

Unique skull geometry

Courtesy Darlene Ketten, WHOI

Unique skull geometry

Courtesy Darlene Ketten, WHOI

Sound producing structures

Cranford et al., 1996

Highly complex and include air sacs and melon

Pneumatic sound generation

Pneumatic sound generation

The melon as an acoustic lens

Melon composed of specialized triglycerides and wax esters

Shape and density of fats vary depending on location in melon

Litchfield et al., 1973

Soldevilla et al., 2005

Mead, 1975

Muscles surround melon that may act to control its shape

Melon Movement

Bottlenose dolphins can steer their beams even when head is fixed

Moore et al., 2008

What are the dynamics of the beam during active echolocation?

Main research questions

1: Does the size or shape of the echolocation beam change depending on the distance or characteristics of the target?

2: What are the frequency dependent dynamics and where is the animal directing its beam during echolocation?

Biology of Odontocetes

Main research questions

1: Does the size or shape of the echolocation beam change depending on the distance or characteristics of the target?

Echolocation for foraging

Odontocete

Basics

Biological Transducers

Beamwidths and angular resolution

ocetes have angular reso of less than 2 degrees.

Broadband Biosonar

Odontocete echolocation signals historically modeled as circular piston

Pneumatic sound generation

Sound producing structures

Unique skull geometry

Coconut Island, Oahu, Hawaii

Marine Mammal Research Program

Experimental Subjects

False killer whale

Bottlenose dolphin

Experimental Pen

Experimental Setup

Hydrophone Array

16 hydrophone system

Records the data from each click independently

Part 1: Focusing Setup of Experiment

Two types of target discrimination tasks: easy and hard Three target presentation distances: 2.5m, 4m, 7m

Part 1: Echolocation Targets

37.85 mm outer diameter 25.15 mm inner diameter standard wall thickness 6.35 mm

Part 1: Focusing Beam Area

Beam Area = Cross section of the echolocation beam containing a set percentage of total intensity

Reconstructing the Beam

Beam areas determined by calculating a certain % of total click intensity

Part 2: Frequency Dynamics and Beam Aim Setup of Experiment

Target Detection Task
Three target presentation distances: 2.5m, 4m, 7m

Part 2: Frequency-dependent variation in beam pattern

Previous studies suggest some odontocetes shape certain frequencies of their beam differently than others

Part 2: Frequency Dependent Beam Variation

Frequency and intensity of clicks vary

Main response axis not directed at target regardless of target distance

Results

Part 1: Hypothesized focusing strategy

Bottlenose dolphin beam scanning

Part 2: Visualizing beam dynamics

Beam size and frequency

All studies on beam changes must take into account frequency effect

Frequency and intensity of clicks vary

Intensity of clicks change during a click train

Frequency and intensity are related

Au et al., 1995

Part 1: False killer whale echolocation focusing

Part 1: False killer whale echolocation focusing

For all targets, beam areas are larger for the hard than the easy targets

Kloepper et al., 2012

For hard targets, beam area increased consistently with distance, but 2.5 and 4.0m are statistically indistinguishable For easy targets, beam area increased between 4.0 and 7.0m but 2.5m is statistically indistinguishable from both

Part 1: Hypothesized focusing strategy

The whale might be adjusting her focal region according to the distance of the target

Focused beams may help reduce clutter echoes

Part 2: Visualizing beam dynamics

= target location

Bottlenose dolphin beam scanning

Main response axis not directed at target

Main response axis not directed at target for target absent trials

Main response axis not directed at target regardless of target distance

Similarities and differences between animals

Direction of main axis is different depending on animal

Both animals use same strategy of pointing main axis away from the target

Species differences or individual differences?

Hypothesis: Using the gradient of the beam pattern for optimal localization

$$D_{\omega}(\theta) = \left(\frac{2J_1(\pi \frac{d}{\lambda}\sin\theta)}{\pi \frac{d}{\lambda}\sin\theta}\right)^2$$

Summary of Experimental Results

The size of the echolocation beam changes depending on target distance and difficulty, which might be a strategy of narrowing a focal region on the target

The main response of the sound beam is directed away from the target, which might allow the animal to use the frequency information on the gradient of the beam for optimal localization

Small, dynamic adjustments occur on a click-by-click basis allowing animals to acoustically focusing on targets of varying characteristics

Summary of Biosonar Techniques

With just a single sound generator, odontocetes can achieve levels of resolution and performance greater than conventional devices with the same aperture and frequency constraints

Odontocetes produce signals with a high bandwidth to center frequency ratio and mechanically focus the emitted signals through a lipid filled melon.

The signals are directed off axis which might be a strategy of utilizing frequency gradients in the beam for target localization

Methods <u>•</u>

What's Next?

What's Next?

Large array for measurements of bat echolocation signals

224 element microphone array

composed of low cost MEMS microphones and custom analog and digital electronics

allows for fine scale, independent, variable frequency measurements of the beam

Visualizing the beam of echolocating bats

Visualizing the beam of echolocating bats

Ear and mouth movements during echolocation

Ear and mouth movements during echolocation

Acknowledgements

Funding Agencies:
NSF Postdoctoral Fellowship
Office of Naval Research

UIA Organizational Committee, Dan Cotter, Prakash Manandhar

Hawaii Team: Marine Mammal Research Program

Professor Paul Nachtigall
Professor Whitlow Au
Dr. Aude Pacini
Trainers Marlee Breese,
Stephanie Vlachos, Christopher
Quintos, Rocky Owens
Students Adam Smith, Aliza
Milette, Sanami Nakayama
Technician Andy Brown

Brown Team: Bat Lab

Professor James Simmons,
Professor Andrea Simmons
Students Jason Gaudette, Erika
Alexander, Jon Barchi, Alyssa
Wheeler
Technician Michaela Warneke
Assistants Fabien Steinbeck
and Sean Yancey

UMass Team: Acoustic Signal Processing Lab

Professor John Buck Students Kaushallya Adhikari, David Hague, Peter Khomchuk, Yang Liu, Ian Rooney, Saurav Tuladhar