A Methodology for Ultrasound Product Development Applications in HIFU and High Frequency

Claudio I. Zanelli Samuel M. Howard

Ultrasonic Industry Association 35th Annual Symposium - San Diego, California March 13-14, 2006

Outline

- Device Development Process
- Outline of a Project
- Case Study: HIFU for fat ablation
- Case Study: High Frequency for Imaging
- Case Study: Ranging Catheter
- What we've learned 3 lessons

Technology adoption by clinicians

Technology adoption by clinicians
Disposable vs. capital equipment

- Technology adoption by clinicians
- Disposable vs. capital equipment
- The "Quick'n Dirty" catch

- Technology adoption by clinicians
- Disposable vs. capital equipment
- The "Quick'n Dirty" catch
- Reproducibility of results

- Technology adoption by clinicians
- Disposable vs. capital equipment
- The "Quick'n Dirty" catch
- Reproducibility of results
- Other technologies: RF, drugs, MRI, video

- Technology adoption by clinicians
- Disposable vs. capital equipment
- The "Quick'n Dirty" catch
- Reproducibility of results
- Other technologies: RF, drugs, MRI, video
- Regulatory hurdles

- Technology adoption by clinicians
- Disposable vs. capital equipment
- The "Quick'n Dirty" catch
- Reproducibility of results
- Other technologies: RF, drugs, MRI, video
- Regulatory hurdles
- The market, reimbursement, funding ...

Ultrasound Medical Device Challenges Adoption by Clinicians

No time to learn new tricks

Ultrasound Medical Device Challenges Adoption by Clinicians

- No time to learn new tricks
- Minimal change from current procedure

Ultrasound Medical Device Challenges Adoption by Clinicians

- No time to learn new tricks
- Minimal change from current procedure
- Anything that will make it easier is OK

Ultrasound Medical Device Challenges The "Quick'n Dirty" Catch

Dilemma:

- 1. Concept requires quick and cheap proof
- 2. Build prototype cheap. <u>Undesirable features</u> will be fixed later.
- 3. Having prototype, do animal tests
- 4. Go for FDA approval (510k or PMA)
- 5. Go to production any changes will require redoing animal tests for FDA.

(Oops!)

Ultrasound Medical Device Challenges Regulatory

Fundamental

- Bioeffects
 - Efficacy
 - Safety
- Design Control
- Process Control

Bureaucratic

- Documentation
- Design Control
- Process Control
- PMA or 510k backup

Development Project Outline

Goal: Risk Reduction!

- Lay out the ground work
- Develop device and evaluate
- File patents
- Set up manufacturing
- ... wait for business success!

Development Project Laying out the ground work

- The IP landscape
- The biology landscape
- Modeling tools
- Prototyping available
- Measurements available
- Technology landscape

Development Project - Ground Work The IP Landscape

Information search

- Patents database
- Literature journal articles
- Awareness networking
- Legal determinations
 - Freedom to operate
 - Technology protection

Development Project - Ground Work The Biology Landscape

- Tissue properties
 - Acoustic
 - Thermal
 - Irreversible changes
- Ranges of variations model and human
 - Anatomical
 - Physiologic
 - In vitro vs. in vivo
- Transferability across species
 - Animal model not available for all conditions
 - Diet matters
 - Size matters

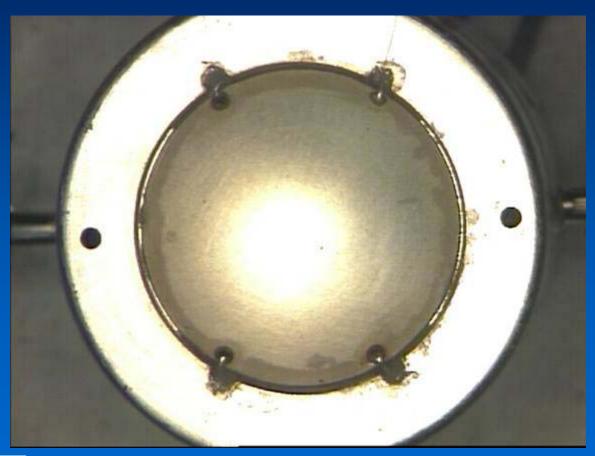
Development Project **Project Outline:** Biology first and last

- 1. Determine the effect sought
- 2. Understand the tissue
- 3. Model the interaction
- 4. Design and model the beam
- 5. Design the transducer and system (Des. Control)
- 6. Test on repeatable (phantom) model
- 7. Measure
- 8. Iterate from 3 until confident with the physics
- 9. Test in tissue
- 10. Iterate from 2 until confident with the biology
- 11. Test in humans
- 12. Iterate from 2 until confident with the results

Modeling Sound in Tissue

Experimental

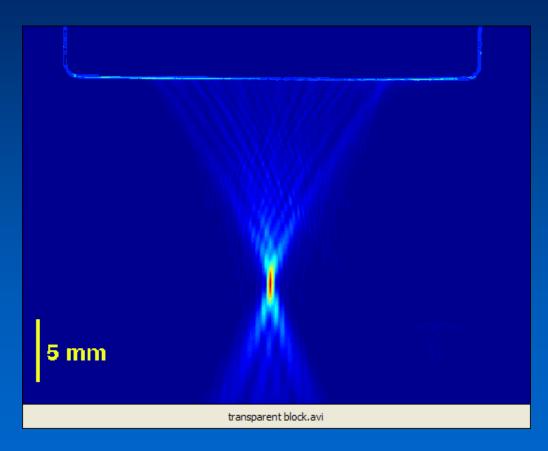
- Live and excised tissue are very different
- Interceding tissue
 - Bone (e.g. for brain)
 - Fat
 - Muscle layers
- Modeling issues
 - Non-linearity (KZK)
 - Acoustics affects thermal affects acoustics ...
 - If heat matters, boundary conditions are key
 - Beam entrance
 - Perfusion



Case Study: HIFU for Fat Ablation

- Goal: Dissolve fat under skin
- IP status: patentable
- Biology: very complicated
 - Tissue: skin, fat, muscle
 - Success determined by heat, damage, resorption
 - Huge anatomical variability
- Physics: Heat tissue to 50C, 4 seconds, 15-25 mm deep
- Beam: F/1.2, 3 to 4 MHz, 30W max
- Transducer: water standoff for coupling and cooling
- Tests: phantom had to be developed

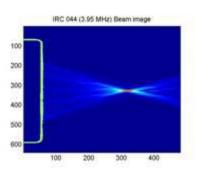
Case Study: HIFU Transducer Modeled and Built

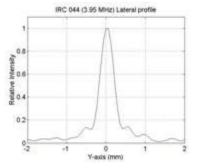


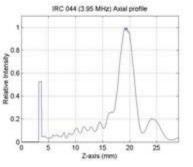
Case Study: HIFU Location Problems

Case Study: HIFU Tissue Modeling, Effects on Gel

Case Study: HIFU Uniformity Problems

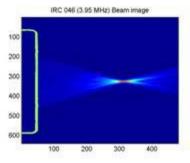


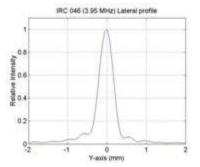

Y-width = 0.58073 mm

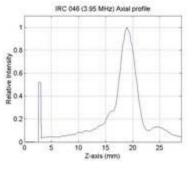

Measured focal length = 18.3634 mm

Area = 0.26488 mm²

Transducer index (120/Area) = 453.041

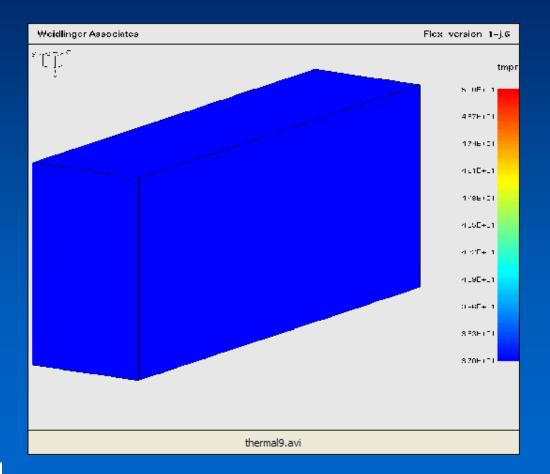


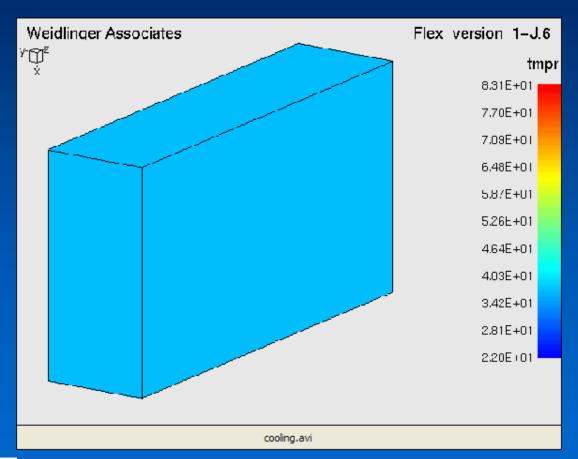

Y-width = 0.58189 mm


Measured focal length = 18.9105 mm

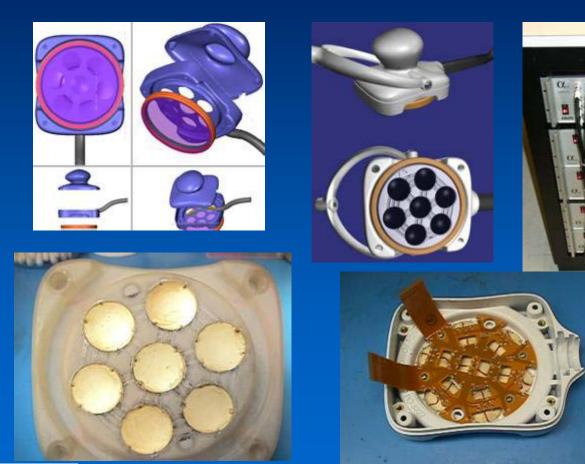
Area = 0.26593 mm²

Transducer index (120/Area) = 451.2388

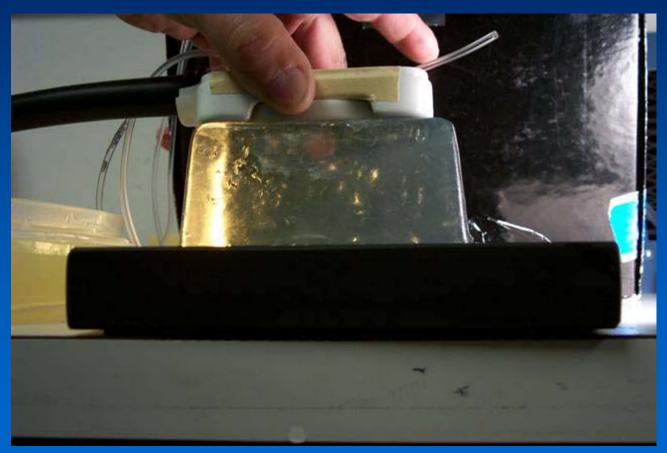




Case Study: HIFU Problem – Beam Entrance Heating

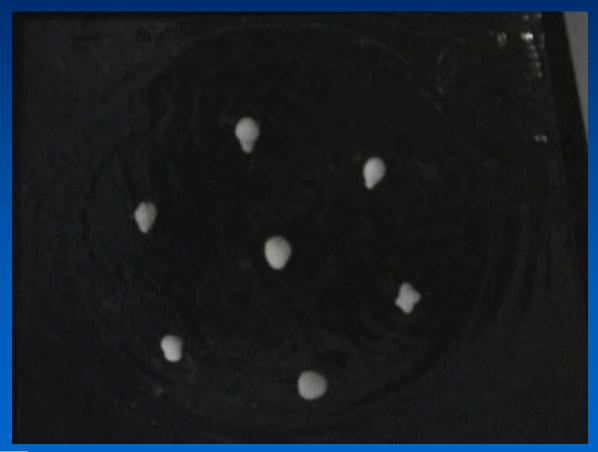


Case Study: HIFU Surface Cooling



Case Study: HIFU Transducers and Drivers - Prototype

Gel Burns

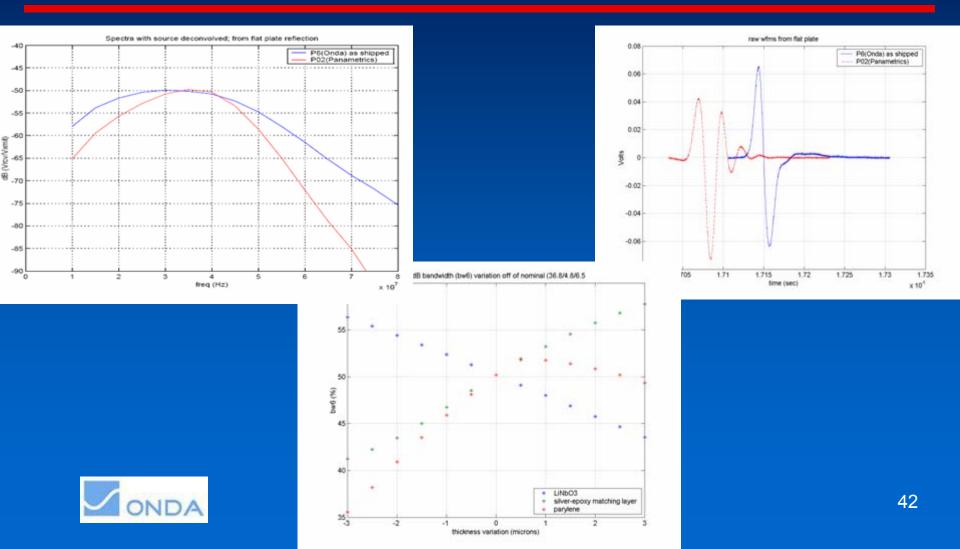


Gel Burns

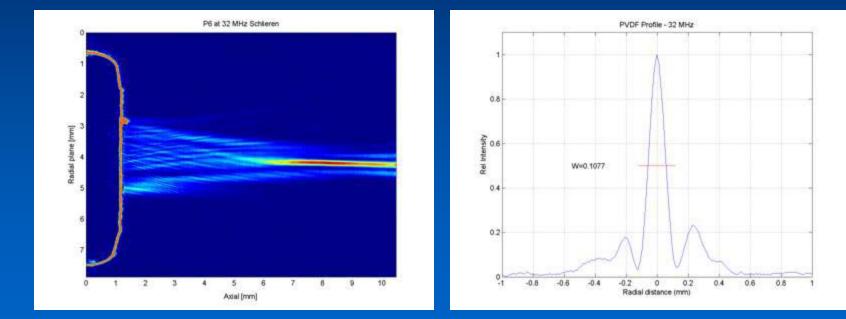
Gel Burns

Conclusions

- Tested in animal model
- Raised \$27M
- Transferred for development in house
- Evolved, about to market 4 years later



Case Study: HF transducer for imaging


- Goal: transducer for imaging at 30 um axial res.
- Tissue: eye
- Beam: F/2 25-45 MHz 3mm diameter
- Transducer: water standoff for coupling
- Tests: water echo

Case Study: High Frequency Imaging Modeling the Transducer

Case Study: High Frequency Imaging Generated Beam

Case Study: High Frequency Imaging Transducer and Image

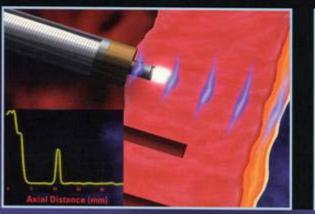
Case Study: High Frequency Imaging Conclusions

- Device improves over previous type
- Funds unavailable
- On hold

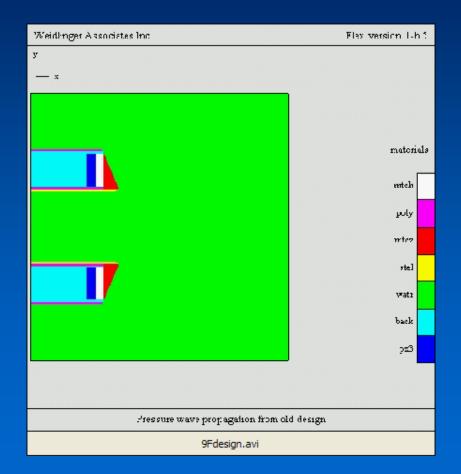
Case Study: Ranging Catheter

- Goal: transducer on a catheter for axial ranging, 250 um axial res.
- Tissue target: pericardium
- Beam: defocused 12-15 MHz 2.5mm diameter
- Transducer: direct contact with tissue
- Tests:
 - Water is (acoustically) good enough
 - Animals, humans

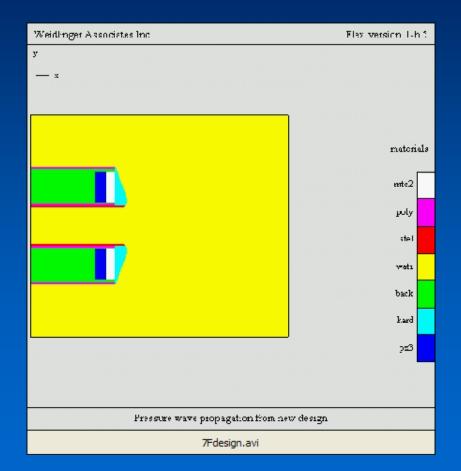
PTMR catheter approaching the endocardial surface.


PROVIDES

REAL-TIME


Contact with the heart wall confirmed, displaying wall thickness and wall motion characteristics.

INFORMATION



Axial Distance (mm)

Case Study: Ranging Catheter Conclusions

- "Enabling technology"
- Successfully tested in humans
- Company merged with its competitor
- TMR technology fell in disfavor
- Product cancelled

 Ultrasound medical device development presents multifaceted challenges that need to be addressed in an integrated, multifaceted approach

 Ultrasound medical device development presents multifaceted challenges that need to be addressed in an integrated, multifaceted approach

Lesson:

Follow a disciplined product development and *integrate all the details*.

 A good medical device requires doing the homework, yet successful medical products are rare.

 A good medical device requires doing the homework, yet successful medical products are rare.

Lesson:

Do not discount the cost of development based on speculation of future sales

Medical device developers expect IP as part of the engineering work *because* IP is the most precious commodity, embodied in the engineering work.

Medical device developers expect IP as part of the engineering work *because* IP is the most precious commodity, embodied in the engineering work.

Lesson:

IP is valuable, don't give it away.

Thank you !

