Implementation of Ultrasonic Metal Welding on an Aluminium Vehicle Structure

UIA Meeting
March 19, 2007

Susan Ward, Daniel Wilkosz, Ray Jahn, Anthony Grima, Larry Reatherford and Elizabeth Hetrick
Ford Motor Company
Janet Devine and Joe Walsh
Sonobond Ultrasonics
What is Ultrasonic Welding?

Ultrasonic metal welding is a solid-state welding process that produces coalescence through the simultaneous application of localized high-frequency (20 kHz) vibratory energy and moderate clamping forces achieved via plant air at pressures up to 7 Bar.
Why Join Aluminium Sheet with Ultrasonic Welding?

• Less energy required than for resistance spot welding
• Lower cost than riveting
• No heat affected zone
• Relatively insensitive to range of lubricant types and levels
• Works on pretreated aluminum
Typical Aluminium Vehicle

Ford P2000 Body-in-White
Typical Aluminium Sheet Alloys for Automotive Vehicles

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Typical Gauges</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA5182-O</td>
<td>0.9 mm- 3 mm</td>
</tr>
<tr>
<td>AA5754-H111</td>
<td>1-3 mm</td>
</tr>
<tr>
<td>AA6016-T4</td>
<td>1-1.5 mm</td>
</tr>
<tr>
<td>AA6111-T4</td>
<td>0.9 – 2 mm</td>
</tr>
</tbody>
</table>
Manual Ultrasonic Weld Gun

Transducer

Anvil

Tip
Sheet Metal Welding Tip and Anvil

Tip Gripping Surface

Anvil Gripping Surface

Tip Side of Welded Coupon
How Does the Weld Develop?

![Graph showing the relationship between welding energy (J) and tensile-shear failure load (kN).]
How Does the Weld Develop?

100 J, Wedge-Reed Welder

200 J, Wedge-Reed Welder
How Does the Weld Develop?

400 J, Wedge-Reed Welder

600 J, Wedge-Reed Welder
Weld Formation Summary

- Physical deformation at weld interface and at tip and anvil interfaces occurs concurrently.
- Mechanical mixing occurs at the interface.
- Some deformation of grains occurs at the interfaces of the tip and anvil with the weldments.
- There is no evidence of melting.
Cross-section of Welded AA6111-T4 (0.9 mm)
Hardness Across Weld AA6111-AA6111

Vickers Hardness (HV)

Anvil Side
Coupon AA6111

Tip Side
Coupon AA6111

Measurement Number
Cross-section of AA6016-AA6111 Weld

Tip Side

Vibration Direction

AA6016

Weld Zone

AA6111

69.5 Hv

85.9 Hv

AA6111

85.9 Hv

AA6016

69.5 Hv

Ford

Sandblonde Ultrasanics
Hardness Across AA6016-AA6111 Weld

- Measurement Number
- Vickers Hardness (Hv)
- Weld Interface Region
- Anvil Side Coupon AA6111
- Tip Side Coupon AA6016
Example of Tensile-Pulled Lap-Shear Coupon
Lap-Shear Failure Loads

Alloys Welded

- 0.9 mm AA6111-T4
- 1.2 mm AA6016-T4
- 1.0 mm AA5182-O
- 1.0 mm AA5754-H111
Fatigue Life of Joined 0.9 mm AA6111, R=0.1

Cycles to Failure

Peak Load (N)
Welding Structures

- Access to weld location
- Cycle Time
 - 0.4 s for 1 mm to 1 mm sheet
 - 2.0 s for 3 mm to 3 mm sheet
- Manual and Robotic Weld Applications
Manual Ultrasonic Weld Gun for Aluminium Vehicle Structure Welding

Multiple Handles Accommodate Welds Made at Several Orientations
Robotic Ultrasonic Welding Gun for Aluminium Vehicle Structure

C-Frame Robotic Weld Gun with Clamping System
Process Robustness

- Alloy Combinations
 - 5XXX
 - 6XXX
- Lubricant
 - Liquid
 - Dry Film
- Gauges
 - 0.9 to 3 mm
Effect of Stamping Lubricant on Weldability of Aluminium

0.9 mm AA6111-T4 to AA6111-T4 Welds
Lap-Shear Failure Loads

0.3 g/m²
0.6 g/m²
1.0 g/m²

Lubricant Level

Failure Load (kN)
Fatigue Life of Welded AA6111 with Various Lubricant Levels
Typical Lap-shear Failure Loads of Different Aluminium Gauges

<table>
<thead>
<tr>
<th>Gauge Description</th>
<th>Load Range (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 mm 5754 to 1 mm 5754</td>
<td>2.8-3.0 kN</td>
</tr>
<tr>
<td>2 mm 5754 to 2 mm 5754</td>
<td>5.0-5.5 kN</td>
</tr>
<tr>
<td>3 mm 5754 to 3 mm 5754</td>
<td>7.5-8.5 kN</td>
</tr>
</tbody>
</table>
Application Challenges

- Presence of adhesive
- Cleaned Samples (no lubricant)
- Clamping weldments
USW Manual Gun for Automotive Assembly Fixture
Robotic USW Gun
for Automotive Closure Panels
Conclusions

- USW is a good, economical joining method for aluminium vehicle construction
- Utilization of USW joining technology is appropriate for a range of aluminium gauges, lubricant levels and aluminium alloys.
Acknowledgements

• Part of this work was performed under cooperative agreement 70NANB3H3015 with the US National Institute of Standards and Technology -- Advanced Technology Program