Investigation of sound fields in ultrasound cleaning baths and correlation with the erosion effect

K.-V. Jenderka, C. Koch

Physikalisch-Technische Bundesanstalt Braunschweig, Germany Department 1.6 - Sound

www.ptb.de

Topics

- Sensor principles
- Determination of spectral parameters
- Quantification of the cleaning effect
- Correlation between sound field parameters and erosion
- Conclusions

Fiber-Sensors

embedded in PU (\emptyset 4,0 mm)

Hydrophones

3D-Scanning-System

Heterodyne Interferometer

Experimental setup

Cleaning bath

Orientation of scan planes

Control of measurement conditions by:

- external excitation
- controlled temperature
- stabilized water level
- calmed water surface

Comparison of sensor principles

f₀ - Hydrophone B&K 8103

f₀ - Fiber Sensor (steel tube)

Sound Field and Powerlevel

Elma T760/DH f₀=45 kHz

Quasi-simultaneous acquisition of sound pressure and particle velocity

xz-scan, sound pressure z-direction / mm x-direction / mm xz-scan, particle velocity z-direction / mm -40 -80 x-direction / mm

Spectral parameters

KVJ @ UIA'07

Sound pressure of the

- Fundamental
- Harmonic
- Sub-harmonic and
- Ultra-harmonic
 Frequency component.
- **Averaged Noise**
 - **Power in the**
- low (100 kHz 200 kHz) and
- high (1.00 MHz 1.25 MHz)

Frequency band.

Mapping of spectral sound field parameters

kPa

3

harm

NP low V² 20 40 60 80 00 -50 0 50 V² 0.5 0.4 0.3 0.2 0.1

KVJ @ UIA'07

-50

0

50

Elma TI-H-5 (xz-plane), hydrophone

Evaluation of the cleaning effect

Mass loss of samples

- aluminium cube
- cast (as solid or in grooves)
- carbon plates
- Perforation of foils
 - aluminium foil
- Reduction/cleaning of reference soiling
 - blacked glass plate
 - rough ceramic plate with lead pencil

Quantification of the Erosion Effect

Quantification of the Erosion Effect

Mapping of spectral parameters and the quantified erosion effect

Corresponding 2D - correlation coefficients

Example 1

	avg f	avg t	avg a	harm	subh	ultrah	NP high	NP low	Erosion
avg f	1.000	0.999	0.997	0.081	0.572	0.659	0.552	0.619	0.472
avg t	-	1.000	0.997	0.078	0.573	0.659	0.552	0.618	0.470
avg a	-	-	1.000	0.106	0.580	0.663	0.561	0.627	0.468
harm	-	-	-	1.000	0.127	0.211	0.241	0.238	-0.092
subh	-	-	-	-	1.000	0.389	0.643	0.647	0.158
ultrah	-	-	-	-	-	1.000	0.376	0.442	0.207
NP high	-	-	-	-	-	-	1.000	0.953	0.110
NP low	-	-	-	-	-	-	-	1.000	0.154
Erosion	-	-	-	-	-	-	-	-	1.000

Cleaning Vessel: Elma TI-H-5, extern excitation f= 45 kHz, degassed water $c_{02} < 3 \text{ mg/I}$

Mapping of spectral parameters and the quantified erosion effect Example 2

yz-plane (from surface down to 45 mm above bottom) scan raster width: 2.5 mm

Corresponding 2D - correlation coefficients

Example 2

	avg f	avg t	avg a	harm	subh	ultrah	NP high	NP low	Erosion
avg f	1.000	0.992	0.974	0.256	0.902	0.918	0.705	0.641	0.425
avg t	-	1.000	0.969	0.242	0.900	0.945	0.667	0.596	0.410
avg a	-	-	1.000	0.287	0.891	0.912	0.690	0.622	0.404
harm	-	-	-	1.000	0.234	0.234	0.184	0.174	0.079
subh	-	-	-	-	1.000	0.776	0.853	0.784	0.397
ultrah	-	-	-	-	-	1.000	0.473	0.396	0.363
NP high	-	-	-	-	-	-	1.000	0.980	0.394
NP low	-	-	-	-	-	-	-	1.000	0.366
Erosion	-	-	-	-	-	-	-	-	1.000

Cleaning Vessel: Elma TI-H-5, extern excitation f= 45 kHz, O_2 -saturated water $c_{O2} = 6 \text{ mg/I}$

Application: Sound field optimization of an Megasonic Cleaner

relative intensity old version:

Application: Detection of transducer failure

Detection of a transducer failure during the scan procedure

Repetition of the scan in the perpendicular plane

Conclusion

The measurement of spectral sound field parameters allows the spatial localization of regions of effective cleaning and supports the user in his search for the best position inside an ultrasound cleaning vessel. Also, it provides an important tool for the design of an optimal sound field geometry.