Workshop 2: Acoustic Output Measurements

Mark Hodnett
Senior Research Scientist
Quality of Life Division
National Physical Laboratory
Teddington
Middlesex, UK

mark.hodnett@npl.co.uk

Workshop material

• Background
 – Why measure?

• Measurement techniques
 – Hydrophones
 – Radiation Force balances

• Summary

Hands-on session
Background

Relevance of acoustic output information

• What is it?
 – Numerical data that describes the ultrasonic field generated by a source and transducer combination: provides information on ‘how much ultrasound is emitted’
 – Defined broadly in terms of
 • Forces exerted (pressure)
 • Energy transfer (power)
What is it used for?

- Safety and performance assessment
- Prototype evaluation
- Routine quality checks
- Acceptance testing
- Patient satisfaction
- Compliance with regulation
- Good manufacturing practice
- Research

Trends

- Significant advancements in technology
 - Diversity of applications
 - Diagnostic
 - Therapeutic (HIFU)
 - Need for increased imaging quality
 - Ever-increasing complexity of equipment
- Steady increases in acoustic output
 - Greater implications for safety
 - Necessary advancements in standards
 - Application-specific limits
 - On-screen displays
- Increased drive for equipment QA
Technology advances

M-mode - peak-negative pressure

Spatial-peak temporal-average intensity

(after Duck and Henderson, Safety of Diagnostic Ultrasound, 1998)

Where do you come across it?
Who needs to know about it?

- You do
- Your customers do
- Your regulatory authorities do

Standards and conformance

- National and international requirements exist to evaluate acoustic output
 - US Food & Drug Administration (FDA)
 - Conformance is a legal requirement before goods may be sold in North America and Canada
 - International Electrotechnical Commission
 - Supports the European Medical Devices Directive (CE marking)
- Local company procedures may exist
 - Periodic QA
What standards are important?

- FDA 510(k)
- IEC 61157
- IEC 61847
- IEC 62359
- IEC 60601-2-37
- IEC 60601-2-5
- AIUM/NEMA UD-3

- AIUM/NEMA UD-2
- IEC 62127-1
- IEC 61161

Measurement devices and techniques
Determining key acoustical parameters

- Need capability to make measurements of high spatial and temporal resolution
- Also need to make measurements of bulk parameters
- In general, ultrasonic fields can be described in terms of
 - Acoustic pressures
 - Acoustic intensities
 - Ultrasonic power

Measurement devices

- Acoustic pressure determined in ultrasound fields using calibrated hydrophones
- Operate via direct piezoelectric effect
Hydrophone construction

- Needle-type
 - Small hollow tube, with active element at tip; connections made via casing and inside

Hydrophone construction

- Membrane-type
 - Plastic ring, over which is stretched polymer film: “spot-poled” in centre to form active element
Commercially available devices

Precision Acoustics, UK
Acoustic Output Measurements Workshop

Force Institute, Denmark

GEC-Marconi, UK
Multi-element hydrophone

- Nonlinear element spacing
- Smaller elements at centre
- Complex shielding mask

Operational differences

PVDF needle hydrophones
- Active element diameters as small as 40 μm: film thicknesses of 9 μm
- Less stable
- Complex frequency response below ~7 MHz
- Minimally-perturbing construction
- Fairly robust (tip excepted)
- Susceptible to electrical noise
- Less expensive

Membrane hydrophones
- Active element diameters as small as 200 μm: film thicknesses of 9 μm
- Very stable – established track record means that they are “gold standards”
- Flat frequency response
- Mechanical access can be limited
- More delicate
- More expensive
Measuring acoustic fields

- Hydrophones often used with associated amplifier
- Waveform-processing oscilloscope required to evaluate parameters
- Motion control required to derive spatial variation of acoustic field
- Hydrophone and system under test immersed in water tank

NPL Beam Plotting Facility Sonora AMS
Ultrasound field propagation

- Wave motion is predominantly longitudinal (compressional and rarefractional)
- Speed of sound, frequency, wavelength
- Pulsed excitation; repetition rate, duration
- Attenuation
- Nonlinear propagation
Ultrasound field propagation

- Velocity of sound, c, depends on density, ρ, and elastic modulus, κ, of medium

\[
c = \sqrt{\frac{\kappa}{\rho}}
\]

- Velocity of sound, c, related to frequency, f, and wavelength, λ

\[
c = f \times \lambda
\]

- The product of the velocity of sound, c, and the density, ρ, is the acoustic impedance, Z

\[
Z = \rho \times c
\]
Describing ultrasound exposure

- 4 main parameters of interest:
 - Peak-negative acoustic pressure (p_r, p_i) \[MI \]
 - Spatial-peak-pulse-average intensity (I_{sppa})
 - Spatial-peak-temporal-average intensity (I_{spta}) \[TI \]
 - Acoustic power output (W)
- Other parameters also needed
 - Acoustic working frequency (f_{awf})
 - Beam widths
 - Pulse duration
- Attenuation in real tissue accounted for
 - Derating of 0.3 dB/cm/MHz

Measurement roadmap

1. Select suitable hydrophone
2. Mount source and sensor
3. Obtain trigger signals
4. Align acoustical and mechanical axes
 - Identify location of peak $I_{spTA.3}$ and $I_{spPA.3}$
 - Acquire required data
 - Determine spatial & temporal parameters
 - Generate reports as required

Acoustic Output Measurements Workshop
mark.hodnett@npl.co.uk
Acoustic pressure

- Acoustic waveform measured at focus of typical diagnostic scanner
- Short pulse duration
- Significant asymmetry
- c.f. atmospheric pressure of 100 kPa
- Important parameter is $MI = \frac{p_r}{(freq)^{0.5}}$

![Acoustic pressure waveform](image)

Intensity

- Derived from acoustic pressure waveform
- Several different parameters defined: is space and time-dependent
 - I_{sp}
 - I_{app}

![Intensity waveform](image)
Pulse-pressure-squared integral

- Derived from acoustic pressure waveform, by summation
- Used to define pulse duration, t_d

\[
I_p = 1.25 \left(t_2 - t_1 \right)
\]

Time-averaged intensity

- Derived from the time average of the instantaneous intensity in the pulse, taken over an integral number of acoustic repetition periods
- Assumes all pulses are identical
 - Pulse duration PD (from time integral)
 - $I_{pta} = I_{spa} \times PD \times prr$

Acoustic Output Measurements Workshop
mark.hodnett@npl.co.uk
Beam dimensions

- Can be determined at –6 dB or –12 dB level depending on standard requirement and field location.

Example of intensity profile
Measuring diagnostic fields

- Most commercial scanners have a large number of output settings
 - Focal zones (single and multiple)
 - Single and combination scanning modes
- Settings which produce maximum ‘acoustic output’ must be found
 - This can take a long time!
 - May require a priori knowledge of system

Actual measurement considerations

- Bandwidth
- Sampling rate
- Signal-to-noise
- Spatial-averaging and directionality
- Triggering
- Uncertainties
Sampling rate

![Graph showing acoustic pressure over time with sampling rate comparison]

Spatial-averaging and directionality

![Graph showing normalized component magnitude vs. angle of rotation and effective element radius vs. frequency]

Acoustic Output Measurements Workshop

mark.hodnett@npl.co.uk
Uncertainties

Uncertainty budget:

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophone calibration</td>
<td>16%</td>
</tr>
<tr>
<td>Oscilloscope</td>
<td>4%</td>
</tr>
<tr>
<td>Temperature</td>
<td>2%</td>
</tr>
<tr>
<td>Standing waves</td>
<td>15%</td>
</tr>
<tr>
<td>Noise</td>
<td>5%</td>
</tr>
<tr>
<td>Position</td>
<td>2%</td>
</tr>
<tr>
<td>Spatial averaging</td>
<td>4%</td>
</tr>
<tr>
<td>Repeatability</td>
<td>6%</td>
</tr>
<tr>
<td>Combined</td>
<td>31%</td>
</tr>
</tbody>
</table>

Power measurement
Determination of power

- Acoustic power can be measured in two main ways:
 - Planar scanning using hydrophones
 - Performed close to output face of scanner head
 - Intensity integrated over beam area
 - Radiation force methods

- Often useful to perform both, to obtain independent check of results

Radiation force - principles

- Travelling acoustic wave has associated momentum
 - Net transfer of energy from transducer into medium

- A target placed in the path of the beam experiences a “radiation force”, which is proportional to the power contained in the beam
 - Requires target large enough to intercept whole beam

- Methodology and principles described in IEC61161
Radiation force balances

- Reflecting target balance
 - Incident energy reflected away to container edges
 - Flat plane target
 - Conical target
 - Requires acoustic absorber around edges of vessel to prevent multiple reflections
 - Needs ‘ideal’ reflecting target interface (air-water)

Radiation force balances

- Absorbing target balances
 - Incident energy absorbed by target
 - High quality material required
 - Totally absorbing
 - Totally non-reflecting
 - Energy deposition can cause target heating
 - Temporal drifts in balance response
 - Convection currents can be important
 - Less sensitive to alignment
Radiation force balances

\[P = c \cdot F \]

\[P = c \cdot F / (2 \cdot \cos^2 \Theta) \]

Radiation force balance targets

- **Absorbing target**
 - NPL Absorber
 - 30 dB cm\(^{-1}\) MHz\(^{-1}\) transmission loss
 - 40 dB echo-reduction
 - Polycarbonate-backed

- **Reflecting target**
 - Electroformed nickel cone, 80 mm diameter, 250 \(\mu\)m thickness
 - Air backed
Radiation force balances

Acoustic Output Measurements Workshop

mark.hodnett@npl.co.uk

NPL
National Physical Laboratory
mark.hodnett@npl.co.uk

Radiation force balances

Acoustic Output Measurements Workshop

mark.hodnett@npl.co.uk

NPL
National Physical Laboratory
mark.hodnett@npl.co.uk
Radiation force measurements

- Beam geometry impacts on accuracy

High ka transducer
- Collimated beam intercepted by target
- Reliable measure of true radiation force

Low ka transducer
- Diverging beam misses target
- Underestimate of true radiation force

Focused transducer
- Converging beam strikes target at range of angles, depends on separation
- Over or underestimate of true radiation force

Radiation force measurements

Radiation force measured with a conical reflecting target as a function of distance in a focused ultrasound field (F-number = 1.5)
Radiation force measurements

- Target size and transducer-target separation important

![Minimum target-transducer ratio at 1.5 mm](image)

Radiation force measurements

- Target heating can occur – limit ON-times

![Power vs Time](image)
Radiation force measurements

- Cavitation occurs – water quality is important

![Graph showing radiation conductance vs. drive voltage squared]

Main points to take away

- Measurement of acoustic output is important
 - Safety and efficacy assessments
 - Compliance with regulation
 - Prototype evaluation

- Good quality data can be obtained using a variety of measurement devices
 - Hydrophone-based systems
 - Radiation force balances
Hands-on session

• Sonora AMS Hydrophone test tank and acquisition system (Jim Gessert)

• Precision Acoustics radiation force balance and checksource (Mark Hodnett)