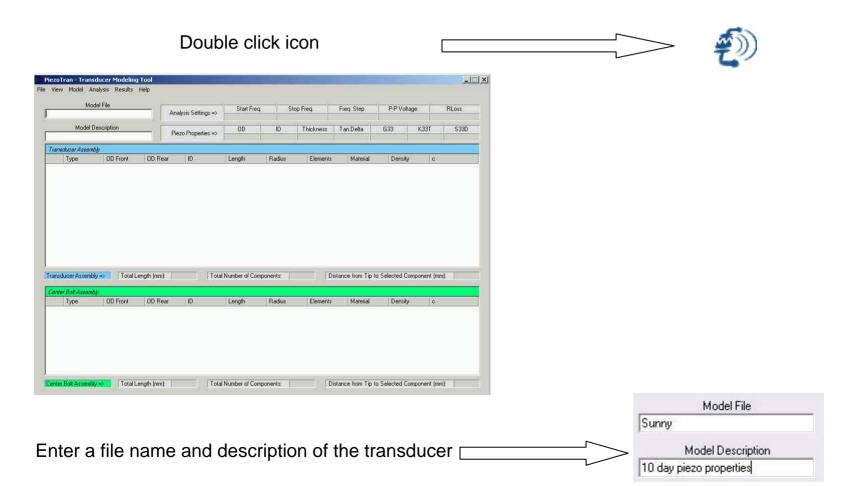
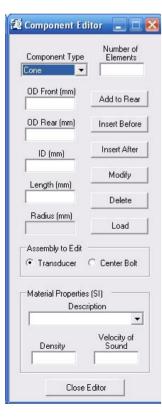


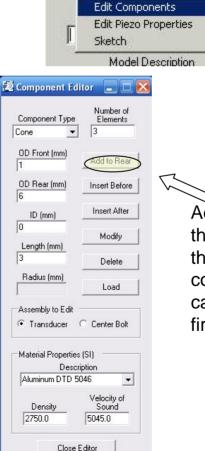
Sound Ideas, Ultrasound Technology



4 Navy Type I piezo rings ϕ 15 X ϕ 7 X 3 (shown in blue) Steel center bolt ϕ 4 X 17 (shown in red). Aluminum alloy rear mass Aluminum alloy front mass/horn


Starting the Program

Input First Component


From Model menu select Edit Components Note that it is convenient to leave this window open

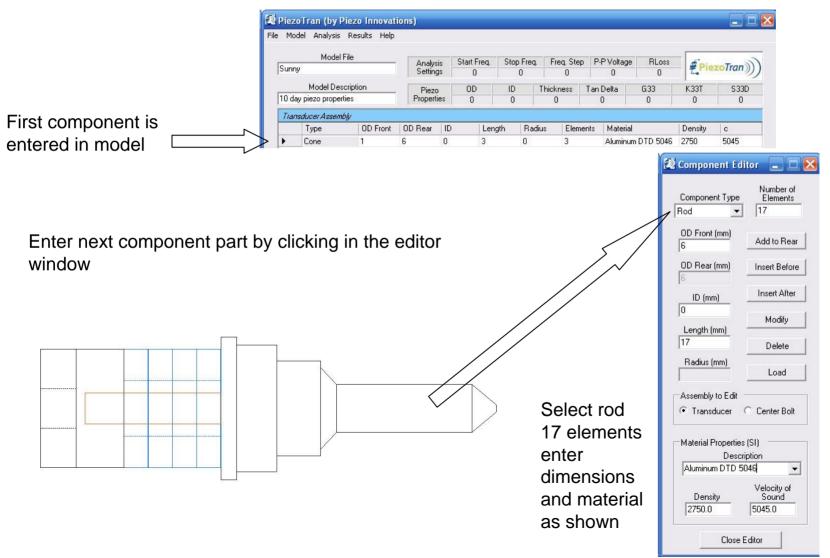
Start with the front radiating cone (Component Type) pre-selected

Pull down Materials Properties menu and select Aluminum DTD 5064

Enter OD Front = 1, OD Rear = 6 Length = 3, Number of Elements = 3

PiezoTran - Transducer Modeling Tool

File Model Analysis Results Help


Add this component to the model by adding it to the rear of the previous component (none in this case since this is the first)

Analysis

Settings

Input 2nd Component

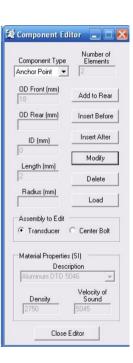
Further Component Input

Add rod to rear of the first cone

e Mo	del Analysis	Results Help											
-	Model	File	Analys	is	Start Free	q. Sto	op Freg.	Fre	q. Step	P-P Voltage	RLoss	<i>⊈</i> Pie	zoTran))
Sunn	Υ.		Setting		0		0		0	0	0		
Model Description		Piezo	,	OD)	Thickn	ness	Tan Delta	G33	K33T	S33D	
10 da	ay piezo prope	rties	Properties		0	0)	0		0	0	0	0
Tran	nsducer Assem	bly											
	Туре	OD Front	OD Rear	ID	L	.ength	Rad	ius	Elemen	nts Materia		Density	с
	Cone	1	6	0	3	1	0		3	Aluminu	m DTD 5046	2750	5045
1	Rod	6	0	0	1	7	0		17	Aluminu	m DTD 5046	2750	5045

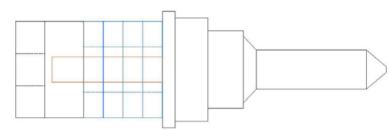
Use editor to enter the next cone and add rod to the rear of the rod

	Model	File		101								_	
0		riie	Analys	is	Start Freq.	Stop	Freq.	Freq. Step	P-P	Voltage	RLoss	₽ Pie	zoTran))
Sunn	У		Setting	gs	0	()	0		0	0	E.Fie	
	Model De	scription	Piezo	,	OD	ID	T	hickness	Tan D	elta	G33	K33T	S33D
10 da	ay piezo prope	rties	Properties		0	0		0	0		0	0	0
Tran	nsducer Assem	nbly											
	Туре	OD Front	OD Rear	ID	Lei	ngth	Radiu	is Eleme	ents	Material		Density	c
	Cone	1	6	0	3		0	3	ļ	Aluminum	DTD 5046	2750	5045
	Rod	6	0	0	17		0	17	1	Aluminum	DTD 5046	2750	5045
100	Cone	6	10.4	0	2		0	2	6		DTD 5046	2750	5045



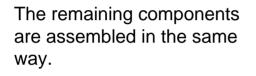
Define Bolt Anchor Point

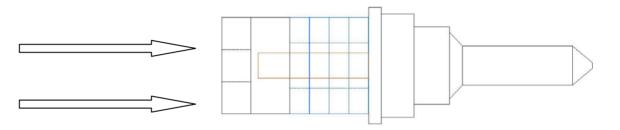
We are now at the junction between the rear face of the front mass and the front of the piezo stack.


The center bolt (shown in red) is also anchored at this point by using the component editor and adding to rear of the previous rod

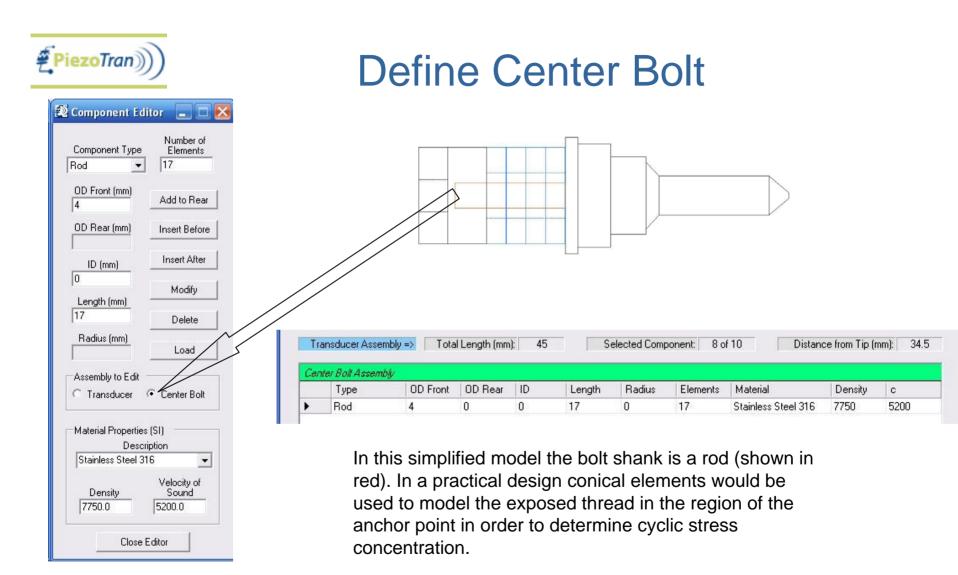
-	Model File	•	Analys	ie	Start Freg.	Stop Fred	Fre	g. Step	P-P	Voltage	RLoss	<i>⊈</i> Pie	-
Sunn	у.		Settin		0	0		0		0	0	- Pie	zoTran)
	Model Descri	ption	Piezo	,	OD	ID	Thickn	iess	Tan Di	elta	G33	K33T	S33D
10 da	ay piezo propertie:	5	Propert	ies	0	0	0		0		0	0	0
Tran	nsducer Assembly												
	Туре	OD Front	OD Rear	ID	Leng	gth Ra	fius	Eleme	ents	Material		Density	с
	Cone	1	6	0	3	0		3	ļ	Aluminum	DTD 5046	2750	5045
	Rod	6	0	0	17	0		17	1	Aluminum	DTD 5046	2750	5045
	Cone	6	10.4	0	2	0		2	1	Aluminum	DTD 5046	2750	5045
	Rod	12	0	0	5.5	0		6	1	Aluminum	DTD 5046	2750	5045
	Rod	16	0	0	5	0		5	,	Aluminum	DTD 5046	2750	5045
	Rod	18	0	0	2	0		2	,	Aluminum	DTD 5046	2750	5045
1000	Anchor Point	0	0	0	0	0		0				0	0

Add Piezo Stack


The 4 ring piezo stack (shown in blue) comprises the piezo elements and a beryllium copper shim electrode sandwiched between them. The complete stack including piezo, shim electrodes and joints, is treated as a single component. In the component editor, select Piezo Stack and note that the number of elements is the number of piezo rings that make up the stack.


Component Type	Number of Elements
Piezo Stack 🛛 💌	4

0	Model File	•	Analys	sis	Start Freq.	Stop	Freq.	Freq.	Step	P-PA	Voltage	RLoss	<i>€</i> Pie	Tran
Sunn	Υ.		Setting	gs	0	C)	()		0	0	T.Pie	zoTran))
	Model Descri	ption	Piezo		OD	ID	-	Thickne:	ss -	Tan De	elta	G33	K33T	S33D
10 da	ay piezo properties	\$	Propert		0	0		0		0		0	0	0
Tran	nsducer Assembly													
	Туре	OD Front	OD Rear	ID	Ler	igth	Radiu	ls I	Elemer	nts M	Material		Density	c
1	Cone	1	6	0	3		0	3	1	A	luminum	DTD 5046	2750	5045
1	Rod	6	0	0	17		0	11	7	A	luminum	DTD 5046	2750	5045
	Cone	6	10.4	0	2		0	2	<u> </u>	A	luminum	DTD 5046	2750	5045
	Rod	12	0	0	5.5		0	e	i	A	Juminum	DTD 5046	2750	5045
1	Rod	16	0	0	5		0	5	i i	A	luminum	DTD 5046	2750	5045
1	Rod	18	0	0	2		0	2	2	A	Juminum	DTD 5046	2750	5045
•	Anchor Point	0	0	0	0		0	0	1				0	0
		0	0	0	0		0	4					0	0



Add Rear Mass

_	Model File)	Analys	is	Start Freq.	Stop Fre	eq. Fr	eq. Step	P-P Voltag	je RLoss	 ₽́Pie	Tran
Suni	ny		Setting		0	0		0	0	0	2, Pie	zoTran))
	Model Descri	ption	Piezo		OD	ID	Thick	ness	Tan Delta	G33	K33T	S33D
10 d	ay piezo propertie:	3	Propert		0	0	0)	0	0	0	0
	-	1										
	Cone	1	6	0	3	0		3	Alumin	um DTD 5046	2750	5045
	Rod	6	0	0	17	0		17		um DTD 5046	2750	5045
	Cone	6	10.4	0	2	0		2	Alumin	um DTD 5046	2750	5045
	Rod	12	0	0	5.5	0		6	Alumin	um DTD 5046	2750	5045
	noa			0	5	0		5	Alumin	um DTD 5046	2750	5045
	Rod	16	0	0	5	U						
	100.000	16 18	0 0	0	2	0		2	Alumin	um DTD 5046	2750	5045
•	Rod							2 0	Alumin	um DTD 5046	2750 0	5045 0
•	Rod Rod	18	0	0	2	0			Alumin	um DTD 5046		
•	Rod Rod Anchor Point	18 0	0 0	0 0	2 0	0 0		0		um DTD 5046 um DTD 5046	0	0

Enter Piezo Properties

From the Model pull down menu select Edit Piezo Properties. From pull down material menu select Navy Type I. Enter piezo ring dimensions. Enter beryllium copper shim electrode properties. Initially ignore the effects of joints. After data input has been completed, select Apply Properties button and close the editor. Note that the total length of the stack components and the number of piezo rings now appear in the transducer assembly model.

🔁 PiezoTran (by Piezo Innovations)

	Model File		Analys	sis	Start Freq.	Stop Fre	q. F	req. Step	P-PA	/oltage	RLoss	<i>₽</i> Pie	Tran
Sunny			Setting		0	0		0		0	0	2,Pie	zoTran))
	Model Descrip	otion	Piezo		OD	ID	Thick	kness	Tan De	elta	G33	K33T	S33D
10 day p	piezo properties		Propert	ies	15	7		3	0.015	5	0.0245	1300	8.53E-12
		1		1.17	1.5593	9	101010	100000000000000000000000000000000000000	Second Log				- 24.25%
	Туре	OD Front	OD Rear	ID	Ler	ngth Ra	adius	Eleme	nts N	daterial		Density	с
	Cone	1	6	0	3	0		3	Δ	Juminum	DTD 5046	2750	5045
F	Rod	6	0	0	17	0		17	A	Juminum	DTD 5046	2750	5045
(Cone	6	10.4	0	2	0		2	A	Juminum	DTD 5046	2750	5045
F	Rod	12	0	0	5.5	0		6	A	Juminum	DTD 5046	2750	5045
F	Rod	16	0	0	5	0		5	A	luminum	DTD 5046	2750	5045
F	Rod	18	0	0	2	0		2	A	Juminum	DTD 5046	2750	5045
1	Anchor Point	0	0	0	0	0		0				0	0
► F	Piezo Stack	0	0	0	12.0	0 999999 0		4				0	0
	1620 J(dCK		0	0	12.0	555555 0		7				0	

OD	ID	Thickness
15	7	3
Mate	erial	Density
Navy Type I	•	7600
Tan Del	ta	G33
0.015	0.0	245
S33D		K33T
8.53E-12	130	00
lectrode Prope	erties	
Thickness	Density	Velocity of Sound
0.01	8300	3911
oint Properties		
Thickness	Density	Velocity of Sound
		27
	1	
Include Elect		

_ _ 5

Sketch Viewer

From the Model pull down menu select Sketch.

Individual components can be identified by selecting them in the assembly script and then selecting the component highlight option in the viewer window or scrolling using Next/Prev buttons.

Mo	del Analysis	Results Help												
	Model	File	Analys	sis	Start Fr	eq.	Stop Freq	F	reg. Step	P-f	^o Voltage	RLoss	₽ Pie	- 0
Sunn	ŷ		Settin		0		0		0		0	0	2 Pie	zoTran))
	Model De:	scription	Piezo	1	OD	_	ID	Thic	kness	Tanl	Delta	G33	K33T	S33D
10 da	ay piezo prope	rties	Propert		15		7		3	0.0	15	0.0245	1300	8.53E-12
Trar	nsducer Assem	nbýv												
	Туре	OD Front	OD Rear	ID		Lengt	h Rad	ius	Elemer	nts	Material		Density	с
	Cone	1	6	0		3	0		3		Aluminum	DTD 5046	2750	5045
	Rod	6	0	0		17	0		17		Aluminum	DTD 5046	2750	5045
•	Cone	6	10.4	0		2	0		2		Aluminum	DTD 5046	2750	5045
	D I	10	0	0.0	- î.		10		0		A1	DTD FOIC	0750	FOIL

The sketch viewer is a very useful tool to check for possible errors in the text data input. It should be used prior to the analysis of the model. For convenience and clarity the transducer and center bolt can be viewed separately.

🛿 Model Viewe
Pan Zoom

Enter Analysis Set-up

From the Analysis pull down menu select Analysis Settings. In the Earwicker model the accumulated mechanical losses (R Loss) are calculated from the mechanical acoustic efficiency by including a resistive network that is added to the radiation impedance. For the ultrasonic cleaning application the R Loss can be calculated by PiezoTran by inputting the measured value of the low power Q factor in air. Alternatively an estimated Q factor can be used (250). Since the high power radiation impedance associated with cavitation is not able to be calculated, an empirical measured Q factor should be used. Thus, for the cavitation load the Q might drop from the 'in-air' value of 250 to 150. It would be normal practice to initially set a wide frequency sweep and large step frequency and then zoom in on the resonant mode of interest.

It is recommended that you save the data file before analyzing the model. Select the Apply Settings button followed by the Close button. From the File pull down menu select Save.

2 Analysis Settings	
Analysis Frequencies (Hz.) Start Freq. Stop Freq. 50000 59000	Step Freq.
Mechanical Losses C R Loss Loss Value © Q Factor 250	P-P Voltage (V) 50 Cable Capacitance 1E-12
C On Inductance	Radiation Losses C On • Off
Radiation Loss Settings Fluid Medium Density	Velocity of Sound
Infinite Baffle Array St Array	pacing (mm)
Apply Settings	Close

le Model Analysis Results Help								
Model File	Analysis	Start Freq.	Stop Freq.	Freq. Step	P-P Voltage	RLoss	<i>⊈</i> Pie	T
Sunny	Settings	50000	59000	20	50	0.1	PiezoTran)	
Model Description	Piezo	OD	ID	Thickness	Tan Delta	G33	K33T	\$33D
10 day piezo properties	Properties	15	7	3	0.015	0.0245	1300	8.53E-1

Analyzing the Model

The model can be run immediately after entering all the data by selecting Analyze Model from the Analysis menu.

To start and run the model with a previously saved data file

The input data file can also be viewed and printed in text format by adding a text extension to the file name

After analyzing the model a text results output file
will be created.

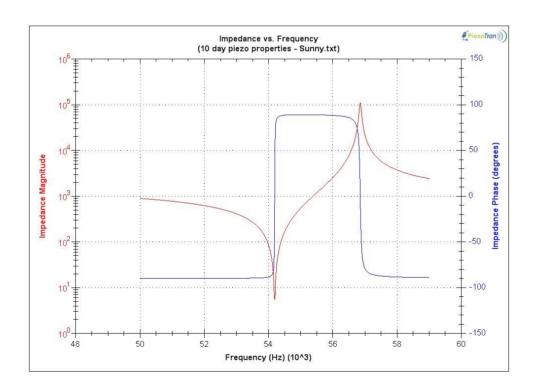
=	Sunny
\equiv	Text Document
=	2 KB

=	Sunny.ptr_results
=	Text Document 58 KB

Output Text File

🖥 Sunny. ptr_results - Notepad 📃 🗖 🔀
<u>Eile Edit Fo</u> rmat <u>V</u> iew <u>H</u> elp
Description 10 day piezo properties
Resonant Frequency = 54200.0 Maximum Conductance = 0.019192
Anti-Resonant Frequency = 56860.0 Maximum Resistance = 19864
Q = 250.2097
RLoss = 1.82
Coupling Coefficient (K) = 0.3022
Low Frequency (1000 Hz) Capacitance = 1.9576E-009
Maximum Tip Displacement = 1.5071E-005
Applied Voltage (P-P) = 50.0000
Applied Voltage (RMS) = 17.6803
Power (Watts) = 5.9994
Real Current (amps) = 0.3393

The text output file also contains tabulated data that is automatically plotted within PiezoTran. The maximum conductance is the reciprocal of the real part of the load resistance. Thus, for high Q transducers, the minimum impedance at resonance is approximately $1/G_{max}$


Adding a cable increases the low frequency capacitance and decreases the effective coupling coefficient.

The model assumes that constant voltage is applied and that the resonance frequency corresponds with the maximum conductance frequency. Power and current are calculated at the resonance frequency.

Graphical Output

Graphical output data can be viewed and printed by selecting Plots in the Results Menu. Plot options can be viewed and selected from a pull down menu in the Results Viewer. Plots of Susceptance vs. Conductance and Projector Sensitivity are applicable to sonar transducer analysis.

PiezoTran Output – Displacements & Stress Maps

Select Model to overlay the sketch of the transducer

