Ceramic Properties And The Practical Interpretation Of Suppliers' Catalogue Data

Wanda Wolny, Rasmus Lou-Møller Ferroperm Piezoceramics

Outline

- Specifications and standards
- Frequency constant
- Dynamic properties
- Ageing (shelf life) and depoling effects
- Influence of the electrode
- Tolerance

Specifications and standards

Standards Materials (CENELEC)

Ferroperm Piezoceramics

Material Cross Reference Chart

	Pz21	Pz23	Pz24	Pz26	Pz27	Pz28
CENELEC EN 50324 -1	600	N/A	500	100	200	300
NAVY1376A		N/A		1	2	3
INDUSTRIAL	3302HD	N/A	7.A	4D	5A	8

	Pz29	Pz34	Pz35	Pz46	Pz52	Pz54
CENELEC EN 50324 -1	600	700	800		N/A	N/A
NAVY1376A	6				N/A	N/A
INDUSTRIAL	5H	2	K81	K15	N/A	N/A

Specifications

Soft PZT	Hard PZT	Relaxor based Piezo
Pz23	Pz24	Pz21
Type II Pz27	Type I Pz26	Pz59
Pz29	Pz28	ES91*
Lead Titanate	Bismuth titanate	"Lead meta-Niobate"
Pz34	Pz46	Pz35
	Pz48	Pz31
NEW!		NEW!
HIFU Materials		Low acoustic Imp PZT
Pz52		Pz36
Pz54		Pz37
		Pz39
IN DEVELOPMENT	IN DEVELOPMENT	IN DEVELOPMENT
Pz49	Pz24FG	Pz61
Ultra high temperature sensors	High density toughened Piezoceramics	Lead Free Piezoceramics

Specifications

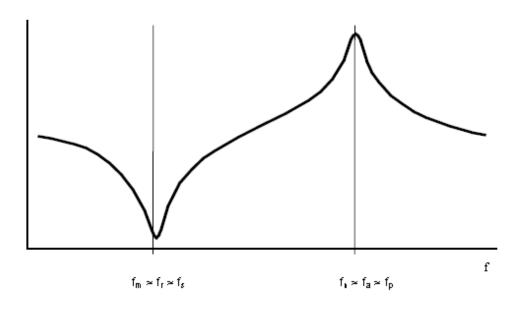
Ferroperm Piezoceramics

Ferroperm Piezoceramic Materials

Material Data for standard test specimens, Measured at 25 °C and 24 hours after poling.

	Symbol	Unit	Pz21	Pz23	Pz24	Pz26	Pz27	Pz28	Pz29	Pz34	Pz35	Pz36	Pz37*	Pz39*	Pz46	Pz52*	Pz54*
Electrical Properties																	
Relative dielectric constant (1 kHz)	K ₃₃ ⁷	1	3800	1500	400	1300	1800	1000	2900	210	220	610	850	1780	120	1900	2800
Diel. dissipation factor (1 kHz)	tanδ	1	18	13	2	3	17	4	19	14	6	3	17	19	4	3	3
Curie temperature	T _c >	*C	205	350	330	330	350	330	235	400	500	350	350	220	650	250	225
Recommended working range	T <	*C	130	250	230	230	230	230	150	150	200	250	250	130	550	200	180
Electromechanical Properties																	
	k _p	1	0.62	0.52	0.50	0.57	0.59	0.58	0.64	0.07		0,26	0,25	0,19	0.03	0,6	0,6
Coupling factors	k _i	1	0.47	0.45	0.52	0.47	0.47	0.47	0.52	0.40	0.34	0,52	50	0,53	0.20	0,53	0,48
Coupling factors	k ₃₁	1	0.34	0.29	0.29	0.33	0.33	0.34	0.37	0.05					0.02		
	k ₃₃	1	0.71	0.65	0.67	0.68	0.70	0.69	0.75	0.40					0.09		
	-d ₃₁	10 ⁻¹² C/N	250	130	55	130	170	120	240	5					2		
Piezoelectric charge coefficients	d 33	10 ⁻¹² C/N	600	330	190	300	425	275	575	50	90	230	340	480	18	420	500
	d ₁₅	10 ⁻¹² C/N		420			500								16		
Disassinations the are as officients	-9 31	10 ⁻³ V·m/N	7	10	16	11	11	13	10	3					2		
Piezoelectric voltage coefficients	933	10 ⁻³ V·m/N	18	25	54	28	27	31	23	25	43	40	40	30	17	25	20
_	N _n	Hz-m	2030	2160	2400	2230	2010	2180	1970	2770					2470	2090	2125
Frequency constants	N,	Hz-m	1970	2030	2100	2040	1950	2010	1960	2200	1550	1270	1170	1190	2000	1960	1950
	N ₃₁	Hz-m		1480	1670	1500	1400		1410								
	N ₃₃	Hz-m		1600	1600	1800	1500		1500								
Mechanical Properties		1															
Density	۵	g/cm ³	7.85	7.70	7.70	7.70	7.70	7.70	7.45	7.55	5.60	5,6	5,7	5,8	6.55	7,3	7,8
Mechanical quality factor	Q _m	1	65	100	>1000	>1000	80	>1000	90	>500	~15	500	50	70	>600	550	1000

Standards Materials (CENELEC)


Table 1. Classes of Materials, CENELEC (European) standards.

			Type 100 Type 200 Hard PZT Soft PZT		Type 300 Very hard PZT		Type 400 Barium Titanate			
Property	Symbol	Unit	Min	Max	Min	Max	Min	Max	Min	Max
Free relative permittivity	$oldsymbol{arepsilon}^{T}_{33}$		1100	1600	1600	2500	800	1150	700	1400
Dielectric loss factor	tan $\delta_{ ext{d}}$	10 ⁻³		6		25		5		10
Increase in ε^{T}_{33} from 0-400 V/mm		%		20						
Increase in tan δ_d from 0-400 V/mm		%		1000				300		
Planar piezoelectric coupling factor	$k_{ m p}$		0.55		0.55		0.50		0.23	
Curie Temperature	$T_{\mathbb{C}}$	°C	300		330		300		100	
Mechanical quality factor	Q_{m}		300			100	800		400	
Piezoelectric charge coefficients	d_{33}	10 ⁻¹² C/N	250		400		200		100	

			Hard	e 500 l PZT $\epsilon^{\mathcal{I}}_{33}$	Very	e 600 7 soft ZT	• •	e 700 `itanate	Lead	e 800 Meta- bate
Property	Symbol	Unit	Min	Max	Min	Max	Min	Max	Min	Max
Free relative permittivity	\mathcal{E}^{T}_{33}		300	850	2500		150	300	200	300
Dielectric loss factor	tan δ_{d}	10-3		5		30		30		10
Increase in ε^{T}_{33} from 0-400 V/mm		%								•
Increase in tan δ_d from 0-400 V/mm		%								
Planar piezoelectric coupling factor	k_{p}		0.40		0.55			0.10*		0.10*
Curie Temperature	$T_{\mathbb{C}}$	°C	250	•	180		230		400	
Mechanical quality factor	Q_{m}		800			100	500			20
Piezoelectric charge coefficients	d_{33}	10 ⁻¹² C/N	150		500		40	·	70	

Standards

$$k_{eff}^{2} = \frac{f_{p}^{2} - f_{s}^{2}}{f_{p}^{2}}$$

Figure 2 - Measured impedance of a piezoceramic transducer

Standards Ferroperm Piezoceramics Measurements (CENELEC)

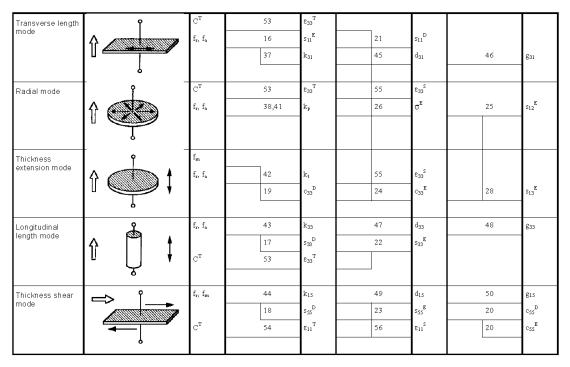


Figure 8 - Step-by-step procedure for calculating a complete set of material coefficients of piezoceramics

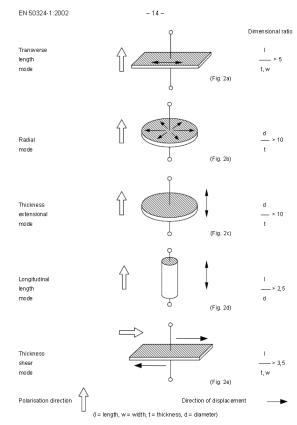
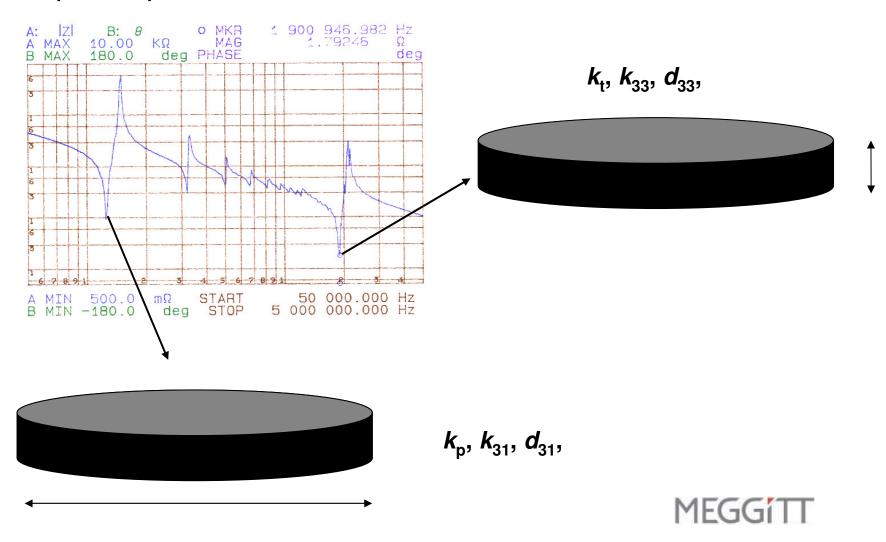
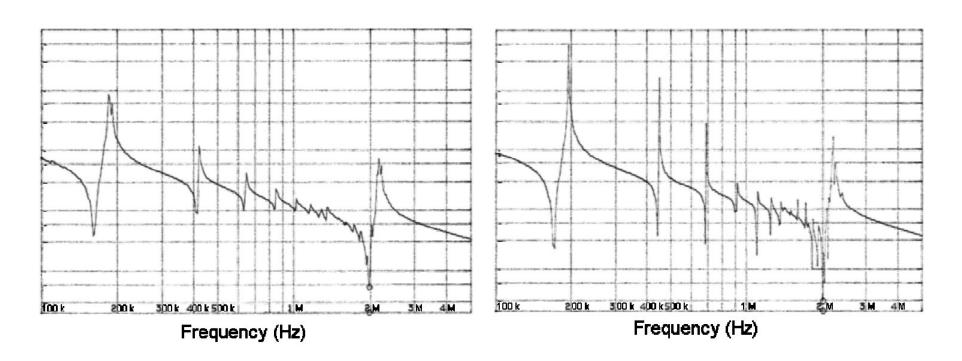


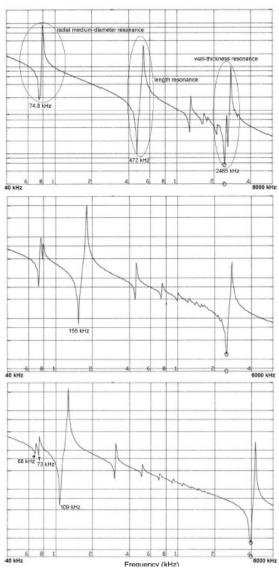
Figure 2 - Fundamental vibration modes of piezoceramic resonators


Frequency constant


Impedance spectrum

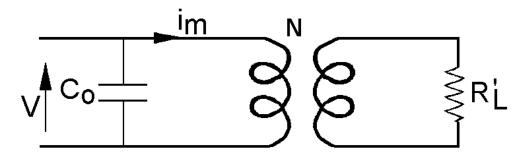
Ferroperm Piezoceramics

Impedance spectrum of a disc


Impedance spectrum soft and hard PZT

Impedance spectrum

shape



Dynamic properties

Dynamic

Ferroperm Piezoceramics

A = electrode area

 ℓ = length for longitudinal and transverse length modes, thickness t for thickness extensional and thickness shear modes

 R'_L = mechanical or acoustical load resistance

C_O = clamped capacitance of the sample

i_m = motional current

V = applied voltage

N = electromechanical transformer ratio

Dynamic

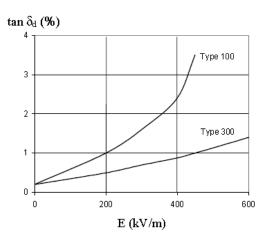


Figure 3 - Loss tangent versus electric field (1 kHz)

Table 2 - Large signal dielectric properties of groups 100 and 300 ceramic standard type (measured in air at 1 kHz)

Property	Туре	e 100	Туре 300
Applied electric field kV/m (rms) E	200	400	400
Max. change in $\ensuremath{\epsilon_{33}^T}$ (percent) above small signal value			
(0,1 V/mm to 1,0 V/mm) $\Delta \epsilon_{33}^{T} / \epsilon_{33}^{T}$	5	18	4,0
Max. dielectric loss factor δ_d	0,02	0,04	0,01

Dynamic

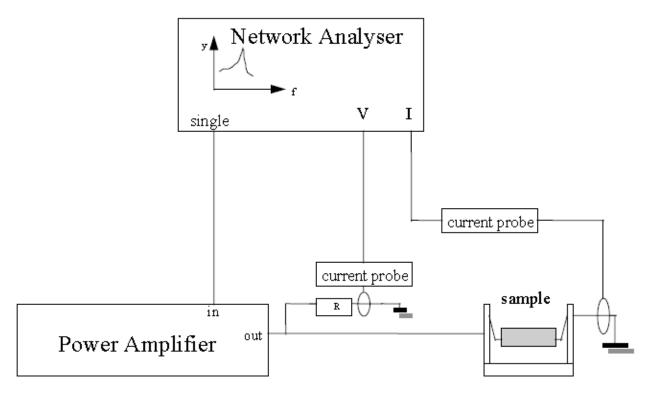
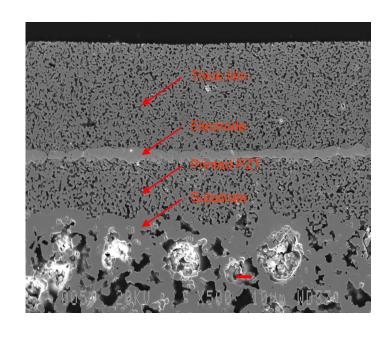


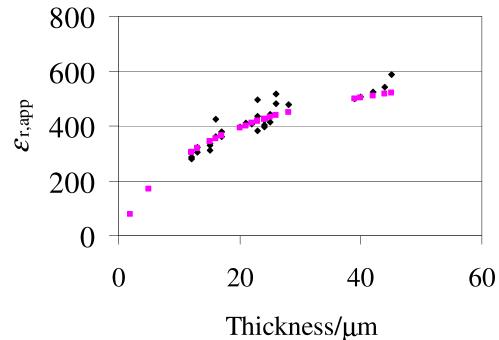
Figure 4 - Experimental set-up for mechanical losses measurement

Ageing (shelf life) and depoling effects

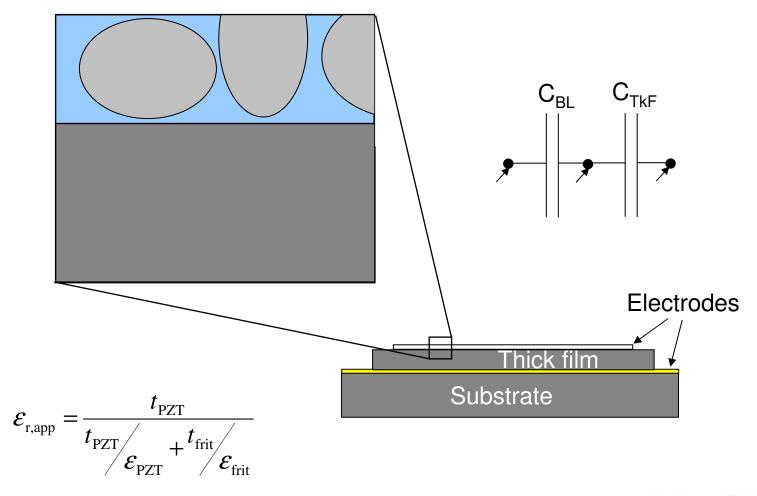
Ageing

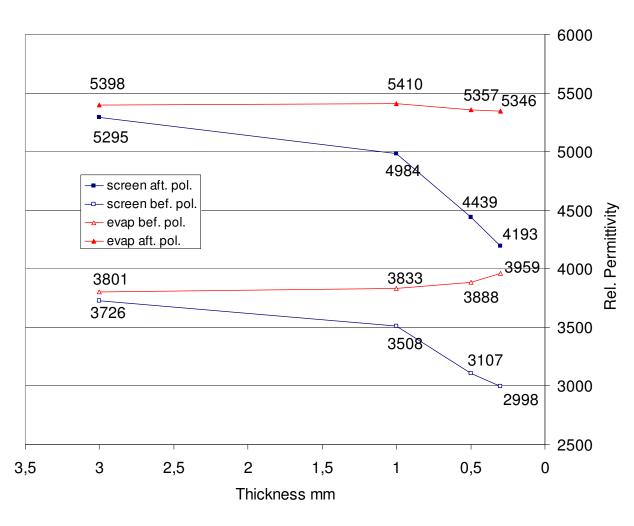
- Ageing is logarithmic if the ceramic is driven a room temperature at low power
- When temperature, field and stress increases the aging is accelerated
- If combined the factors can amplify each other

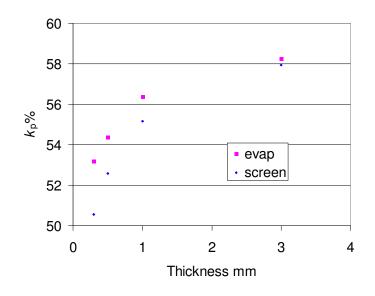


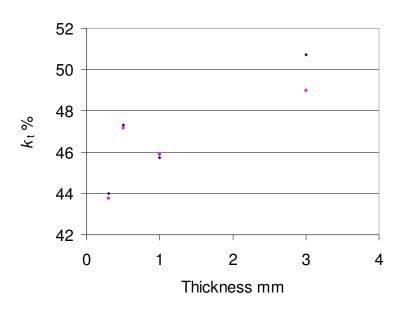

Influence of the electrode

Ferroperm Piezoceramics


Thick film







Summary

- When choosing a material for a transducer design one should know how to interpret material data sheet
- Properties are measured using standards which are specified in terms of measurement setup and sample geometry
- Real conditions may differ from the ideal case
- Extreme driving conditions can affect the performance
- The electrodes affect the apparent properties of the ceramic componenet

