Medical Applications of Shock Waves

Robin Cleveland
Dept. of Mechanical Engineering
Boston University

Ultrasonic Industry Association Meeting
14 April 2010
Boston
~3 million people
~70 colleges
~300,000 students

BU 30,000 students

Robin Cleveland, Boston University
Outline

• Nonlinear Acoustics
• Shock Wave Lithotripsy (SWL)
• Orthopaedic Devices
• High Intensity Focused Ultrasound for Surgery
• Tissue Harmonic (Nonlinear) Imaging
Nonlinear Distortion

β Coefficient of nonlinearity
1.2 in air
3.5 in water
5-10 in tissue

Beyond shock formation wave is multivalued

Robin Cleveland, Boston University
Harmonic Production

![Graph showing the relationship between pressure and B_n amplitude against frequency ω.](image)
Harmonic Generation

Plane Wave Shock Formation in Tissue

\[x = \frac{100}{\frac{p_0 f_0}{x}} \text{ mm} \]

MPa MHz

Shock Parameter

\[\sigma = \frac{x}{x} \]

Robin Cleveland, Boston University
Nonlinearity vs. Absorption

Nonlinearity Steepens

Absorption Smooths

\[\rho T \frac{\partial s}{\partial t} = \kappa \nabla^2 T \]

Thermal conduction
Viscosity, …
Length Scales

Nonlinearity

Plane wave shock formation distance in tissue

\[\bar{x} \approx \frac{100}{p_0 f} \text{ mm} \cdot \text{MPa} \cdot \text{MHz} \]

At 3.5 MHz and 1 MPa length scale 30 mm

Absorption

Soft tissue 0.3 dB/cm/MHz

At 3.5 MHz length scale 10 mm

Diffraction

Focal lengths 10-150 mm
Kidney Stones

- Stones form in collecting system of kidney
- Stones have layered structure;
 - 100 µm crystalline (calcium oxylate) and 15 µm glue
- 1995: 10% of males and 4% of female have one episode by 70 years
- 2005: 13% of males and 7% of female have one episode by 70 years

Robin Cleveland, Boston University
Extracorporeal Shock Wave Lithotripsy (ESWL)

- Introduced 1980
- Shock waves generated outside the body are used to fragment stones
 - Day surgery
 - Typically with mild sedation
 - 1000-4000 SWs at 1-2 Hz (30-90 mn)
 - Some discomfort - pain in 10% of patients
 - Some soreness at shock wave entry site
 - Hematuria for 1-2 days
Electrohydraulic Shock Wave Lithotripsy

Robin Cleveland, Boston University
Electromagnetic Lithotriptor

Coil

Acoustic lens

Membrane

Focus

Cylindrical Electromagnetic Source

Parabolic Reflector

Pressure (MPa)

HM3 24 kV

Storz SLX Energy 9

Time (µs)
Piezoelectric Lithotripter

Piezoceramic elements

Back ing

Robin Cleveland, Boston University
Storz Modulith SLX
Electromagnetic Lithotripter

Robin Cleveland, Boston University
Ultracal 30 Disintegration
SWL Induces Injury

- Haematuria
- Subcapsular haemotomas
- Kidney failure

- Onset hypertension
- Affect growth of kidney in paediatric patients
SWL-Induced Injury (EHL-Dornier HM3)

Lesion Size increases with SW amplitude

Robin Cleveland, Boston University
Mechanisms of Stone Comminution

- Compressive stress
- Tensile stress - spall
- Shear forces
- Cavitation
- Fatigue
- Squeezing/splitting

Robin Cleveland, Boston University
Cavitation Bubbles

- **a**: Shock wave
- **b**: 100 µs
- **c**: 200 µs
- **d**: 300 µs
- **e**: 400 µs
- **f**: 500 µs
- **g**: 600 µs

Robin Cleveland, Boston University
Elastic Wave Simulations
Haibiao Luo, PhD Student

\[
\rho \frac{\partial \mathbf{v}_i}{\partial t} = \frac{\partial \tau_{ij}}{\partial x_j}
\]

\[
\frac{\partial \tau_{ij}}{\partial t} = \lambda \frac{\partial \mathbf{v}_k}{\partial x_k} \delta_{ij} + \mu \left(\frac{\partial \mathbf{v}_i}{\partial x_j} + \frac{\partial \mathbf{v}_j}{\partial x_i} \right)
\]

- \(\mathbf{v}_i \): velocity vector
- \(\rho \): density
- \(\tau_{ij} \): stress tensor
- \(\lambda, \mu \): Lamé coefficients

- Finite-difference time-domain code in two dimensions
- Grid staggered in both space and time (Virieux scheme or Yee cell).
- Unknowns: \(\mathbf{v}_i, \tau_{ij} \)
Stress Waves in Natural Stones

- Shock Waves incident on a kidney stone results in two waves in the stone:
 - Compression Waves
 - Shear Waves

- Waves generate tension and shear in the stone.

- Solve dynamics equations for an elastic solid using a natural stone for the geometry.

MicroCT Image of Natural Stone
COM=Blue
AP = Red
JC Williams, IU Med School
Display Isobars of Stress

- **Red** = Tension 60 MPa
- **Blue** = Compression 20 MPa
- **Green** = Maximum Shear at 40 MPa
Simulation 8 mm Focal Width

Robin Cleveland, Boston University
Shapshots of Stress Waves

Blue = Compression
Red = Tension
Green = Shear

Absence of tension rules out contribution from spall
Shear waves responsible for tension

Incident Shock Wave
Shear wave generation at edge of stone

Robin Cleveland, Boston University
Evolution of Lithotripsy

• Introduced in 1980
• By 1990 about 85% of kidney stones in the US and Europe were treated with SWL
• Competing technology has advanced
 • Ureteroscopy
 • Percutaneous nephrolithotomy
• 2005 Urologic Diseases in America report: 50% of stones are treated with SWL
• Mass General Hospital 2008
 • Ureteroscopy 386 (84%)
 • ESWL 62 (16%)
What has changed?

Dornier HM3
• Diameter of focal zone ~ 12 mm
• Water bath for coupling
• Slow rate - triggered by ECG < 1 Hz

Third Generation Lithotripters
• Diameter of focal zone reduced to <8 mm
• SW source coupling through gel
• Rates increased to 2 Hz

Robin Cleveland, Boston University
Wide vs Narrow Focus

Focal spot size (p+/2) Retreatment Haematoma

Modulith
- 4 mm
- 35 mm

HM3
- 12 mm
- 85 mm

- 22.4% & 49.2%
- 3%

- 4.1% - 7%
- 0.8%

Kerbl et al
J. Endourol. 2002

Robin Cleveland, Boston University

Manufacturer

- HM3 24 kV
- Storz SLX Energy 9
Coupling: Gel Results in Air Pockets
Fragmenation vs Air Pockets

Only ~8% coverage by air pockets reduced stone breakage by 60%
The Effect of Shock Wave Rate

Meta-Analysis

<table>
<thead>
<tr>
<th>Study</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pace</td>
<td>-0.133 (-0.254, -0.009)</td>
</tr>
<tr>
<td>Madbouly</td>
<td>-0.087 (-0.174, -0.017)</td>
</tr>
<tr>
<td>Yilmaz</td>
<td>-0.163 (-0.307, -0.019)</td>
</tr>
<tr>
<td>Davenport</td>
<td>0.008 (-0.181, 0.196)</td>
</tr>
<tr>
<td>Combined</td>
<td>-0.102 (-0.168, -0.037)</td>
</tr>
</tbody>
</table>

Robin Cleveland, Boston University
Shock Waves in Orthopaedics

Chronic soft tissue pains near the skeletal system
• Plantar fascitis (devices approved by FDA)
• Heel spurs
• Tennis elbow (epichondilitis)
• Shoulder rotator cuff calcifications

Soft Tissue Repair
• Revasuclarisation of the myocardium
• Wound/Burn Healing
• “micro-trauma” accelerates natural repair processes
• Neovascularisation
• Analgesic

Bone
• Fractures/Non-unions
• Bone growth
• Osteogenesis by bone tissue disruption

Robin Cleveland, Boston University
HMT Ossatron

FDA approval:
chronic lateral epicondylitis (tennis elbow)
chronic plantar fasciitis (heel pain or heel spurs)
What is the stress distribution in the presence of bone?
HMT Evotron/Equitron

Electrohydraulic source
Ellipsoidal reflector with 35 mm focus

Equitron: Veterinarian version of a clinical device:
EMS Swiss Dolorclast
“Radial shock wave”

Ballistic source

Handheld Therapy Unit

1-4 atm pressure

Projectile → Therapy Head

Robin Cleveland, Boston University
High Intensity Focused Ultrasound
Focused Ultrasound Surgery

Absorption produces localised heating in the focal region:
- Cell lysis
- Haemostasis
US beam direction

Lesion

Beef Liver

Robin Cleveland, Boston University
Applications of HIFU

• Ophthalmology
 – FDA approval 1985

• Cancer
 – Liver, kidney, prostate, breast, brain, skin…

• Non Cancer
 – Uterine fibroids, epilepsy, liver surgery, BPH, ophthalmology…

• Trauma Care
 – Acoustic hemostasis through vessel occlusion
 • Transcutaneous
 • Intraoperative

• Clinical Trials
 – Columbia University
 – University of Washington
 – Brigham and Women’s Hospital
Therapeutic Ultrasound/HIFU Simulations with Heating

Solve nonlinear acoustics equations
Couple to the bioheat equation.

1 MHz source with 1 MPa source pressure

Hallaj and Cleveland, ARLO, 1999
Robin Cléveland, Boston University
Simulations of Lesion Formation

Figure No. 1

- $p(0 \, \mu s)$
- $T(0 \, \mu s)$
Nonlinear Enhancement of Heating

6 ms (6000 cycles) burst of 1 MHz ultrasound

Nonlinear distortion converts energy to higher frequencies which are more readily absorbed

Robin Cleveland, Boston University
Harmonic Growth
Nonlinearity and Lesions

Transducer moved
Power 15 W average
Duty cycle
1: 6.25% (240 W pk)
7: 100% (15W)

Robin Cleveland, Boston University
Tissue Harmonic Imaging

Diagnostic ultrasound scanner

Transmit at f_0

Nonlinear generation of $2f_0$

Reflection of both harmonics

Processing to form image from $2f_0$ only

Reduced clutter and enhanced boundary definition

Robin Cleveland, Boston University
Harmonic Imaging of the Breast

– reduces clutter in cysts
– improves contrast
– improves border delineation
Nonlinear propagation in water

KZK and experiment

Circular x-ducer
Focused, CW

Axial pressure for 4 harmonic components

Fund
2nd hrm
3rd hrm
4th hrm

Averkiou and Hamilton, JASA 1995
Robin Cleveland, Boston University
Measurements in beef tissue

P3-2 Phased Array
MI=0.5
focus=8 cm

IEEE Ultrasonics 1997

Robin Cleveland, Boston University
Summary

• Physics of shock waves described by nonlinear acoustics
 – Waves distort and produce higher harmonics
• SWL revolutionised treatment of kidney stones
 – Risks associated with treatment
 – Mechanisms of stone comminution
• Shock waves for orthopaedic indications
• Nonlinearity enhances therapeutic heating
• Nonlinearity enhances diagnostic imaging

Support from:
• The National Institutes of Health *P01-DK 43881, R01-DK059933*
• The Whitaker Foundation *RG-01-0084*
• High Medical Technologies, HMT-AG, Switzerland
• The National Science Foundation Engineering Research Centre for Subsurface Sensing and Imaging Systems (CenSSIS) *EEC-9986821*

Robin Cleveland, Boston University
ME 520 Acoustics 1

• Graduate level introductory acoustics
• Distance learning course Fall 2010
• Monday and Wednesday 4pm-6pm

http://www.bu.edu/me/me520-acoustics-i/

http://people.bu.edu/robinc/me520

Google search: bu me520
Graduate Students
Jon Kracht
Haibiao Luo
Parag Chitnis
Ibrahim Hallaj
Andrew Draudt
Yuan Jing

Colleagues
Michal Bailey
James McAteer
Andrew Evan
James Williams
Yura Pischalnikov
Ronald Roy
Glynn Holt
Larry Crum
Vera Khokhlova
Oleg Sapozhnikov
Gail ter Haar
Michalakis Averkiou