

Advanced Analysis and Characterization of the UAM and VHPUAM Bonding Processes

 D. Schick, R. DeHoff* and M. R. Sriram, R. M. Hahnlen, M. Dapino, S. S. Babu, & <u>M. Norfolk</u>
 Department of Materials Science and Engineering, College of Engineering, Columbus, Ohio Email: <u>babu.13@osu.edu</u> Tel: 614-247-0001
 *Currently at Oak Ridge National Laboratory

Acknowledgement: Team

- K. Graff J. C. Lippold
- - M. Sriram

M. Dapino

M. Short

O. Barabash

- R. Hahnlen
- D. Schick K.
 - K. Sojiphan

GI:

D. Foster

C. Hopkins

R. Dehoff

Outline

- Motivation
 - UAM Process
- Basic and Applied Research
 - Microstructural Characterization
 - Thermal Characterization
 - Mechanisms for Interfacial Bonding
- Potential Applications
- Summary and Conclusions

Ultrasonic Additive Manufacturing

- Uses solid-state ultrasonic metal welding (UMW) to create netshape metal parts
- <u>http://www.solidica.com/s</u>
 <u>ystems.advanced.html</u>

Potential hybrid examples:

Embedded Electronics

Embedded Fiber Optics

Armor Materials

Complex Shapes

Thermal Management Parts

• What is the challenge?

Materials Science and Engineering, College of Engineering

Ref: K. Johnson, Solidica K. Graff, EWI

Challenge: Fundamental mechanism of joint formation is not clear

- What are the stages in the bond formation:
 - Plastic Strain and Strain Rate (can be ~ 10³ to 10⁵/sec
 - Peak Temperature
 - Heating and Cooling Rate
- At OSU we have started a systematic fundamental and applied research to address this need.

Experimental Parameters

- Materials:
 - 6061-H18 & 3003-H18
- 1.5 kW Solidica formation[™]
- UAM Process Parameters
 - Substrate Temperature:
 - 300° F (~150° C);
 - Frequency: 20 kHz
 - Tack Pass:
 - 12 μm (ampl), 200-350 N
 - 60-140 ipm (25-59 mm/s)
 - Weld Pass:
 - 17-26 μm (ampl), 1150-1800 N;
 - 100 ipm (42 mm/s) (for 3003 only)
 - 25 35 ipm (20.6 to 14.8 mm/s) -6061

Anisotropic mechanical properties are observed in UAM Builds

Optical microscopy shows lack of bonding at interfacial regions

Tensile failures correlate with these un-bonded regions

Linear void density distribution leads terms scatter in transverse properties

UAM processing leads to increase hardness of the 3003 alloy foils.

 Hardness mapping is in agreement with the observed increase in longitudinal strength

Fundamental question: How does the bonding occur during UAM?

We need multi-scale characterization techniques to understand the formation of joints

Focused Ion Beam (FIB) Machining is used to extract the samples from localized regions

Both bonded and un-bonded regions are analyzed.

OIM analyses show recrystallized grains at the interface region

Transmission electron microscopy shows complex microstructure distributions

 Original deformation microstructure is still present in foil regions

Non-bonded void regions show nanostructured Corundum oxide layers

Transmission electron microscopy confirms the recrystallization at the interface region (bottom)

(a)

Is this microstructural change consistent?

Recrystallization appears to be consistent (middle).

(b)

• What about the top region?

Extent of recrystallization and grain growth appears to be less significant (top).

• What did we learn from these results?

Both bonded and un-bonded regions show microstructural evolution similar to localized hot-working

 Is there a temperature increase at the interface regions?

Temperature measurements were made in different locations simultaneously

Measurements showed interesting behavior

All thermocouples (1-6) show simultaneous heating without any delay!

Thermal diffusivity appears to be infinite!
 Why do we see such behavior?

Thermo-mechanical effects appear to be felt by all interfaces

Ultrasonic Vibration Out of Plane

• What is the role of temperature increase?

Analyses using Zener-Holloman equation suggests a rapid thermo-mechanical process at the interface region

Substrate Temperature = 423 K

$$d_{sub} = \left[-0.60 + 0.08\log(Z_h)\right]^{-1}$$
$$Z_h = \varepsilon^o \exp\left\{\frac{18,772}{T_P}\right\}$$

- Key: Induce plastic deformation followed by recovery and recrystallization
- Currently, we cannot measure both simultaneously!

What is the significance of these result for industrial application? Currently UAM process is limited to aluminum alloys.

How can we extend this to other high temperature alloys?

Very High Power Ultrasonic Additive Manufacturing

- Collaboration with EWI
- 11000 Cu
- Up to 9 kW
- Amplitude: 38µm
- Normal Force: 6700N
- Welding Speed 30mm/s

Microscopy shows interfacial deformation & recrystallization

- Similar to UAM processed Al alloys
- In principle, can be extended to other alloys as long as we can increase the interface temperature locally.
- What do we need?

20 kV/ 5 spot size/ 23 mm WD/ 0.19 µm step size

Equiaxed grains Approx. interface

> "Sheared" grains

Future Directions: A Large VHPUAM machine will be commissioned in April 2010

- OSU has commonuse agreement
- Embedding Targeted alloys/liquids/gases possible
- Very relevant to Y12 missions

Summary and Conclusions

- Near-net shaped hybrid materials can be fabricated using UAM and/or VHPUAM
- Temperature increases at interfaces between tapes due to localized high-strain rate thermo-mechanical processing of asperities
- Recrystallization and grain growth appears to be a requirement for joint formation
- Future directions to adopt this process to high-temperature alloys are presented

