Design and realisation of a simple, rapid Beam Plotting System for medical ultrasound fields

Christian Baker
National Physical Laboratory
Teddington
Middlesex
TW11 0LW

40th Annual Symposium of the Ultrasonic Industry Association
Wolfson Medical School, University of Glasgow, UK, 23 May 2011
Presentation plan

- The Problem
- Requirements of a Solution
- Our Design & Implementation
- Measurement Procedure
- Testing
- Future Improvements
The Problem (1/3)

- Number of ultrasound scans carried out each year is increasing, systems becoming more complex
- Safety committees recommend QA procedures
- QA of medical ultrasound devices is time consuming and expensive
- Many hospitals find it difficult to undertake QA measurements
The Problem (2/3)

BMUS Safety Guidelines Recommend periodic checking of acoustic output:

- ‘There should be independent checks that the displayed TI and MI values are accurate’
The Problem (3/3)

Thermal Index:

‘the relative potential for a tissue temperature rise.’

Mechanical Index:

‘relative potential for ... an adverse bio effect by a non-thermal mechanism including cavitation.’
System Requirements (1/5)

- Rapid
- Easy to use
- Portable
- Cost effective
- No need to submerge device under test
System Requirements (2/5):
Scanned and Non-Scanned Modes
System Requirements (3/5): Mechanical Index

\[MI = \frac{p_{r.3}(at \ z_{sp})}{\sqrt{f}} \]
System Requirements (4/5): Thermal Index (Soft Tissue)

- **Scanned / At Surface Non-Scanned**

\[TIS_{as,ns} = \frac{P_{1x1} f_{awf}}{210 \text{ mW MHz}} \]

- **Below Surface Non-Scanned**

\[TIS_{bs,ns} = \min \left[\frac{P_\alpha(Z_{s,ns}) f_{awf}}{210 \text{ mW MHz}}, \frac{I_{spta,\alpha}(Z_{s,ns}) f_{awf}}{210 \text{ mW cm}^{-2} \text{ MHz}} \right] \]
System Requirements (5/5):
Required Measurements

- Axial scan \((p_r, l_{ta}) \)
- Pulse repetition rate / frame rate & pulses per frame
- Acoustic working frequency
- Output power and bounded square power
Design & Implementation (1/5):
Pressure Measurement Sensor

- Onda HGL-0200 Hydrophone & AG-2020 Preamp
- PicoTech PicoScope 4224 PC Oscilloscope
- LabVIEW Software on a Laptop PC

Frequency Response

80 MS/s
20 MHz Bandwidth
Design & Implementation (2/5): Power Measurement

- Thermal method
- Pyroelectric effect of thin (52 µm) pvdf layer
- Backed by a thick, highly absorbent layer (75 dB cm⁻¹ at 1MHz)
- Output proportional to rate of change of temperature of pvdf

Design & Implementation (3/5): Power Measurement

- Transducer
- Thin Mylar membrane
- Bounded Square Aperture
- Pyroelectric pvdf layer
- Perspex tank wall
- Absorbing backing

ON

OFF
Design & Implementation (4/5): Diagram
Design & Implementation (5/5): Photos
Design & Implementation (5/5): Photos
Design & Implementation (5/5): Photos
Measurement Procedure (1/10): 1) Alignment

Alignment → PRR/FRR → Axial Scan → Frequency → Power → Calculations
Measurement Procedure (2/10): 1) Alignment
Measurement Procedure (2/10):
1) Alignment
Measurement Procedure (2/10): 1) Alignment

Diagram showing the alignment process with steps:

1. Alignment
2. PRR/FRR
3. Axial Scan
4. Frequency
5. Power
6. Calculations
Measurement Procedure (3/10):
2) Pulse / Frame Rate Measurement

- Non-Scanned Mode
Measurement Procedure (4/10):
2) Pulse / Frame Rate Measurement

- Scanned Mode with Constant Pulse Rate

Alignment → PRR/FRR → Axial Scan → Frequency → Power → Calculations
Measurement Procedure (5/10):
2) Pulse / Frame Rate Measurement

- Scanned Mode with Varying Pulse Rate

Alignment → PRR/FRR → Axial Scan → Frequency → Power → Calculations
Measurement Procedure (6/10):
2) Pulse / Frame Rate Measurement

Alignment → PRR/FRR → Axial Scan → Frequency → Power → Calculations
Measurement Procedure (7/10): 3) Axial Scan
Measurement Procedure (8/10):
4) Frequency Measurement

Alignment → PRR/FRR → Axial Scan → Frequency → Power → Calculations
Measurement Procedure (9/10):
5) Power Measurements
Measurement Procedure (10/10): 6) De-rating and MI TI Calculation
Summary

- Portable system
- Simple alignment of hydrophone to beam axis
- Automatic beam plotting
- Simple power measurement as part of same system
- Automatic calculation of MI and TI
Future Work

- Easier alignment
- Reduce effect of vibration on power sensor
- More portable
- Comparison with existing systems

Acknowledgments

Thanks to Bajram Zeqiri, Mark Hodnett, Adam Shaw, Jill Barrie, Andrzej Jastrzebski, Michael Lynn, Hazel Starritt and the National Measurement Office.

christian.baker@npl.co.uk
National Measurement System

The National Measurement System delivers world-class measurement science & technology through these organisations.