

Optimisation of the longitudinal-torsional output of a half-wavelength Langevin transducer

Hassan Al-Budairi Margaret Lucas Patrick Harkness School of Engineering-University of Glasgow

Outline

- -LT vibration.
- -Applications.
- -Method of producing LT vibration.
- New method, features and conclusion.

Longitudinal-torsional shape of motion (LT):

• Longitudinal mode (L)

• Torsional mode (T)

- Coupling of modes.
- Degeneration of longitudinal mode.

Ultrasonic applications:

Ultrasonic drilling

 \succ

Horn

Transducer

 Ultrasonic tissue dissection

Coupling of modes:

- L mode: $\begin{array}{c}
 C_L = nC_T \\
 \lambda_L = \overbrace{f}^{C_L} & & \lambda_T = \overbrace{f}^{C_T} \\
 \lambda_L = n\lambda_T & & \uparrow \end{array}$ • T mode:
- Uniform cross-sectional parts:

$$C_L = \sqrt{E/\rho} \qquad \qquad C_T = \sqrt{E/2\rho(1+\nu)}$$

• Non-uniform cross-sectional parts : Exponential horn

Coupling of modes in Langevin transducer:

- Two sets of piezoceramics.
- Determine the f_r , materials.
- β calculated from L and T wave equations.

•
$$\beta = \frac{lin\frac{R_1}{R_2}}{L}$$

Coupling of modes:

- Advantages:-1- produces high response.
 - 2- produces high torsionality.
 - **3-** L and T response can be controlled independently.

• **Disadvantages:-**1- requires two power generators.

> 2- requires expensive tangentially poled piezoceramics.

3- difficult to secure into an enclosure.

4- difficult to keep the same resonance frequency under different load conditions.

5- Working surface decided by the decay coefficient.

Degeneration of L mode:

- Modify the wave path of L transducer.
- Slots dimensions, location, the helix angle.

Degeneration method:

- Advantages:-1- requires only a longitudinal excitation.
 - 2- inexpensive fabrication.

3-easy to secure into an enclosure.

4- more resonance stability under different load conditions.

Disadvantages:-1- low torsionality.

2- coupling with surrounding unwanted modes.

New approach:

- f_r , Z_a , Z_b , a.
- $\sum \frac{Z_a}{Z_b} \tan(\frac{\omega a}{v_a}) \tan(\frac{\omega b}{v_b}) = 1$

• Output surface is decided by the application requirement.

New approach

Design parameters:

- Depth of cut.
- Area of cut.
- Helix angle.
- Torsionality.
- Frequency spacing.
- Relative response.
- Nodal plane position.

Case 1

Max. Torsionality	170%
Frequency spacing	3%
Max./Min. responses	4.3

Case 2

Max. Torsionality	140%
Frequency spacing	5%
Max./Min. responses	4.0

Case 3

Max. Torsionality	102%
Frequency spacing	12%
Max./Min. responses	3.7

Analysis techniques:

- Finite element analysis.
- Experimental analysis.
- * Modal analysis.
- * Harmonic analysis.
- * Electrical analysis.

<u>1- Torsionality:</u>

Numerical and experimental response peaks and torsionality for different excitation voltages

2- Frequency spacing:

	Modes	Model 1	Model 2
FE	LT-2F	20.8%	18%
	LT-3F	14.5%	20%
Exp.	LT-2F	21.2%	
	LT-3F	18.1%	

Numerical (left) and experimental (right) modal analysis of the desired and surrounding modes.

3- Location of nodal plane:

Napeerincah (FIRA) toine frantes ref dotsgifu din al briationioresponses.

<u>4- Design scaling:</u>

5- Electrical analysis:

Conclusions:

- Employing the advantages of two methods can produce a design which overcomes their disadvantages.
- The proposed model is simple in design, excitation and securing features.
- It can be designed in different sizes which are suitable for a range of ultrasonic applications.
- It has good dynamic characteristics including good separation between modes and stability under different operation conditions.

Thank you