Invasive/Non-invasive Ultrasound Effects on Adipocytes and Adipose-Derived Stem Cells

Mark E. Schafer, Ph.D. FAIUM FASA
Sound Surgical Technologies, LLC

41st Annual Symposium of the Ultrasonic Industry Association
Outline

• Introductory Materials

• Background
 – Ultrasound mechanisms in medicine
 – Application to adipose tissue

• Two-Part Experimental Approach
 – Low Frequency (36kHz) invasive treatment
 • Viability of aspirated adipocytes and stem cells
 – High Frequency (1MHz) non-invasive treatment
 • Cellular effects and implications

• Conclusions
Introduction, or Why I love Ultrasound

- Ultrasound is an incredibly diverse technology
- Application of ultrasound in medicine has revolutionized both diagnosis and treatment of disease (“Billions and billions…”)
- By tailoring the temporal and spatial characteristics of the ultrasound energy, radically different outcomes are possible
- This work presents two types of ultrasound treatments for adipose tissue
Background: Ultrasound Spectrum

Medical Ultrasound: 20kHz to >20MHz

Therapeutic/Surgical ultrasound: 20kHz to 2MHz

Diagnostic Ultrasound: 2MHz to >20MHz

“Low” frequency Ultrasound: < 250kHz

Wavelengths: 10’s of cm to <0.1mm

Can be focused or unfocused
Ultrasound’s Diversity: Multiple Approaches

- Monopole
- Pulsed
- Spatial
- Temporal
- Frequency/Wavelength
- Contact
- Avoided
- Intimacy
- Heat
- Cavitation
- Focused
- Continuous
- 2.3MHz
- Non-invasive
- Exploited
- Stable
Ultrasonic Interaction with Tissue

- **Thermal**
 Absorption or Frictional/Viscous Heating
- **Cavitation**
 Action of microbubbles, Transient or Stable
- **Radiation Force**
 Net force on tissue due to passage of waves
- **Acoustic (Micro)Streaming**
 Induced viscous flow around cells
- **Isolate or blend effects based on design**
 Frequency, focusing, intensity, temporal
- **Biological / Chemical effects**
 Vasodilation, sonopheresis, improved lymph flow, muscle relaxation, reduced inflammation, and pain relief. Short-term change in pH and cell membrane permeability
Low Frequency Ultrasound: Bubbles

- **CAVITATION**: the creation and action of air or gas bubbles in a liquid
- Ultrasound causes cyclic compression and rarefaction (squeezing and pulling) on very small bubbles (cavitation nuclei)
- Bubbles grow until they reach “resonant” size, at which point they collapse and the process repeats.
Low Frequency Ultrasound and Adipose Tissue

- **Cavitation** nuclei interspersed among the fat cells grow and expand, forcing the fat cells apart.
- After reaching their resonant size, the bubbles collapse, pulling the fat cells from their matrix.

- Once the fat is loosened, **Acoustic Streaming** causes it to mix with the tumescent fluid to form a suspension.
- Near the vibrating tip, these forces cause intense localized swirling to further break up the fat into small clusters of cells.
High Frequency Ultrasound: Thermal Effects

- Temperatures can rise a biologically significant amount in a few minutes.
- 1MHz ultrasound, and the heat that it creates, will effectively permeate about 4-5cm into tissue.
- At these power levels, other effects such as radiation force also occur.
High Frequency Ultrasound and Adipose Tissue

- Unfocused ultrasound (1-3MHz) is well established as a treatment modality through induced heating and mechanical micro-stimulation
Two Part Experimental Approach

Low Frequency

• Use the 36KHz VASER® system for lipoaspiration
• Harvest samples from five patients
• Examine the viability of the harvested adipocytes for reimplantation
• Process the aspirate to get stem cells and compare to other approaches

High Frequency

• Use the 1MHz, dual transducer VASERshape for external treatments
• Treat three Yorkshire pigs
• Attempt to track what happens to lipids
• Determine effects on cellular structures

System Comparison

Low Frequency (VASER) High Frequency (VASERshape)
LF Ultrasound: Materials and Methods

- **Equipment settings:**
 - VASER system setting: 60-70% amplitude in the pulsed (VASER) mode
 - VentX aspiration system setting: 15 inHg or less vacuum
 - 3mm cannulae

- **Consented patients undergoing elective liposuction procedures.**

- **Patient selection criteria:**
 - Male or female; Age 20-50
 - Good health; ASA Class I; BMI < 30
 - Non-smoker preferable
 - Preferred areas: abdomen, flanks, inner and outer thighs

 - Exclude: back, chest, arms, calf, superficial sculpting
 - No revisional surgeries

<table>
<thead>
<tr>
<th>Run ID #</th>
<th>Gender</th>
<th>Age</th>
<th>Harvest Site</th>
<th>Volume</th>
<th>Experiment Date</th>
<th>Physician</th>
</tr>
</thead>
<tbody>
<tr>
<td>V-2524-1</td>
<td>F</td>
<td>24</td>
<td>Abd, flanks</td>
<td>1.7 L</td>
<td>12/14/2010</td>
<td>A</td>
</tr>
<tr>
<td>V-2554-2</td>
<td>F</td>
<td>28</td>
<td>right flank, left flank</td>
<td>730 mL</td>
<td>1/21/2011</td>
<td>B</td>
</tr>
<tr>
<td>V-2588-3</td>
<td>F</td>
<td>45</td>
<td>flanks, thighs</td>
<td>800 mL</td>
<td>2/25/2011</td>
<td>C</td>
</tr>
<tr>
<td>V-2602-5</td>
<td>F</td>
<td>43</td>
<td>flanks/inner thighs</td>
<td>800 mL</td>
<td>3/17/2011</td>
<td>A</td>
</tr>
<tr>
<td>V-2646-7</td>
<td>F</td>
<td>38</td>
<td>thighs</td>
<td>1.5 L</td>
<td>419/2011</td>
<td>D</td>
</tr>
</tbody>
</table>

Note: samples were collected from two other patients who were determined not to have met the study selection criteria (age and sex)
Typical Aspirate & Gross Morphology (H&E)

“Clean” aspirate with little free lipid

Tissue comparable to syringe or SAL derived samples, showing mature unilocular adipocytes with intact membranes
Intact Cell Images

Intact fat cell clusters (Thermogenesis)

Image shows intact fat cells (dark red), free lipid (bright red), ADRCs (blue) and collagen (green) (UPMC)
Lipolysis assay determined adipocyte viability by measurement of metabolic activity known to directly correlate to viability. An agonist of glycerol release (isoproterenol) was used, and free glycerol content was determined by spectrophotometry.

Mean value of **85.1%** (comparable to published SAL results), independently confirmed by UPMC, Thermogenesis.
Adipose tissue was processed using the Celution® 800/CRS system. Resuspended ADRCs were counted using the NucleoCounter™ system to determine the number \(1.81 \times 10^5 \pm 0.68 \times 10^5 \text{ cells/gm}\) and relative viability of the cells (next slide).
Viability of ADRCs

Again, values were independently confirmed by other research groups.
Immunostaining of loosely adherent cells/components

CD 31

CD 34

CD45 positive (hematopoietic)

CD68 positive monocyte/macrophages

Arrows denote individual CD34 positive progenitor cells.

CFU-F percentage of 0.33% fell within historical range for syringe techniques.
The laboratory data indicate:
- density and viability of both the adipose cells and the ADRC component of the lipoaspirate were comparable to standard (non-ultrasound) methods.

This would support a proposed mechanism of action that does not destroy cell membranes, but selectively dislodges adipocytes from the tissue matrix (stable cavitation, acoustic streaming).

Specifically the system uses:
- higher frequencies (36.6kHz vs 24kHz)
- lower amplitudes (73µm vs 120µm)
- custom drive conditions (VASER mode)
- grooved solid probes

¹US Patent 6,368,299
HF Ultrasound: Materials and Methods

• Equipment settings:
 – VASERshape system setting: multiple treatments at typical clinical setting 5W/cm²
• Three anesthetized Yorkshire pigs (50+ kg)
 – Full IACUC approval for acute study
 – One side treated, other side control
 – Implanted thermocouples (2, 14, and 32mm)
 – External IR camera
 – Harvest skin, fat, muscle on both treated and control sides
 – Harvest lymph fluid pre/post; biopsy of lymph tissue treated/control
• Analysis of tissue
 – Histology (H+E, TriChrome, NADH, Oil Red O)
 – Triglyceride values for blood and lymph fluid samples
HF Ultrasound: Materials and Methods

Ultrasonic guidance of thermocouple using TouchView system
Infrared Video Imaging

- Warmer areas show up in orange; cooler areas in purple
- Image shows pig belly, treated area, operator arm holding handpiece on left side
- Operator treated the skin surface to produce uniform heating over a large surface area
- Temperature reached level necessary to cause skin retraction
Temperature Results

Uniform heating down to at least 30mm
Blood triglyceride levels also showed a slight increase.
Samples from lymph nodes

Images and staining show that lipids have migrated from the adipose compartment into the lymph system.

EM of fat cells shows minor disruption of cell walls.

All other histology images indicate no changes to muscle or skin.

Left - Control

Right - Treated
HF Experiment: Discussion

- Animal studies demonstrate:
 - Subcutaneous and deeper heating effects from the ultrasound exposure
 - No apparent harm to the adipose cells, nor to the overlying skin or underlying muscle layers
 - Adipose cells release their internal lipid contents, which are flushed into the lymphatic system

- These results support a proposed mechanism of action, which includes a (predominant) thermal effect (dramatically increasing the metabolic rate of the adipocytes), acousto/mechanical action on the cells, and acoustic streaming forces on the freed lipids
Wide range of ultrasound effects

Low Frequency
- The 36kHz VASER® system for lipoaspiration
- Harvested cells, both fat and regenerative, were plentiful and viable
- Mechanism of action: stable cavitation, acoustic streaming (non-destructive)

High Frequency
- The 1MHz, dual transducer VASERshape for external treatments
- Deep, uniform tissue heating, with no lysis of fat cells or damage to surrounding tissue
- Lipids released and forced to the lymphatics
- Mechanism of action: thermal and micromechanical
Acknowledgements

• Kevin Hicok, PhD Cytori Therapeutics
• Onelio Garcia, MD FACS
• Daniel Mills, MD, Steven Cohen, MD, Steven Chou, MD, Maurice Sherman, MD
• University of Pittsburgh Medical Center (UPMC) Stem Cell Laboratory
• Thermogenesis

THANK YOU!