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Piezosurgery® Device 

Developed and manufactured by Mectron S.p.A 
Image courtesy of Mectron S.p.A  



Piezosurgery® Device: Vibrational behaviour 
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Ultrasonic bone cutting: Benefits 

• Reduced applied loads 

• Reduced debris formation 

• Increased accuracy 

• Low threat to delicate soft 

tissue; nerve, brain & spine 

• Requires 20-30% of force compared to 

traditional cutting devices 

• Fine debris compared to burs and saws 

• Enhanced healing time 

• Less likely to damage tissue which 

could lead to halting the procedure 



Device precision 

Window cut in 
egg 

Photron fastcam ultima APX Mectron transducer with OT7 
cutting insert 

Recording: Frame rate: 4000fps Resolution: 512x512 
Video: Frame rate 1000fps 



Clinical procedure: Bilateral sagittal split 
Osteotomy of the mandibular 
Shortens or lengthening of the lower jaw to 
correct dentalfacial deformities caused by 
congenital abnormal skeletal development as 
well as trauma sequelea. 

Beziat et al 2007 

Mandible exhibiting 
prognathism  Normal mandible position  

Mandible exhibiting 
retrognathism 



Clinical procedures: Osteotomy 

Comparison with traditional cutting methods 

Bone saw Bone bur Ultrasonic device 
(Piezosurgery® Device) 

Representative histologic photomicrographs of decalcified specimens characterising 
the appearance of the cut edges of osteotomy incisions baseline (original 

magnification 2.5x, stain hematoxylin-eosin) 

Images courtesy of Mectron S.p.A  



However, power ultrasonic devices can exhibit 
behaviour that reduces their performance and which 
can subsequently lead to premature device failure. 

Aim of Research 
To create design criteria for stable power ultrasonic systems 

through understanding sources and causes of nonlinear 
behaviour 

 



Poor performance in power ultrasonic devices 

Poor performance and reliability can stem from a number of 
sources, such as; 

• Sub-optimised / poor design 

• Modal coupling 

• Modal interaction 

• Presence of Duffing-like behaviour 



Outcome of poor reliability and performance 

Failure of cutting blades 



Linear  Linear response of ultrasonic devices  
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Nonlinear responses of ultrasonic devices 
Can significantly influence driving stability as well as hindering power ultrasonic 
system development 

Nonlinear behaviour 

Frequency Shifts 
Softening / Hardening effect 
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Nonlinear responses of ultrasonic devices 

A
m

pl
itu

de
 

Frequency ωn 

B
ifu

rc
at

io
n 

Can significantly influence driving stability as well as hindering power ultrasonic 
system development 

Nonlinear behaviour 

Frequency Shifts 
Softening / Hardening effect 

 
Bifurcations 
 



Nonlinear responses of ultrasonic devices 
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Can significantly influence driving stability as well as hindering power ultrasonic 
system development 
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Nonlinear behaviour in piezoceramics is influenced by:   
Application of high stresses 

Dielectric, mechanical and piezoelectric losses within piezoceramics 

• High vibration amplitudes 

• Temperature increases 
• High electric field 

Nonlinear responses of ultrasonic devices 

Ultrasonic tools:   
Application of high stresses 

• High vibration amplitudes 

Material selection 
Device architecture 



Influence of temperature and ε on piezoceramics  

Umeda et al,1999. 

Piezoceramic samples;  
Qm values: 
#A: 60.7, #B: 85.2 
#E: 1554, #N: 1292, #C: 2053 



Influence of temp and ε on acoustic efficient metals  

Campos-Pozuelo & Gallego-Juárez, 
1996. 

Attenuation with respect to strain 
Duraluminium Titanium Titanium 

Duraluminium: 2.4x10-4     30MPa 

Titanium:  2.2x10-3   200MPa 

Limiting strain Max Stress w/o fatigue  



Characterisation of ultrasonic devices 

Experimental modal analysis 
• Low power excitation: linear region of vibration 
• Resonant frequencies and mode shapes extracted 

Harmonic excitation 
• Both low and high power excitation: linear and nonlinear 

regions 
• Excitation via a bidirectional sweep 
• To understand nonlinear characteristics of the ultrasonic 

device it is necessary to remove thermal contributions from 
the piezoceramics 
 



Characterising of power ultrasonic devices 

Experimental modal analysis (EMA) 



Bidirectional burst sine sweep technique 

Transient Steady state 

Measurement 
period 

Burst 

• 6000 cycles 
• At 28kHz; 0.286 sec 

• Time delay; 1-10 sec   

Harmonic excitation 



Investigated Devices 

  

Mectron Transducer 
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EMA: Half wavelength devices 

OT7: f = 27190Hz BI: f = 28761Hz 





EMA: Half wavelength devices 
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OT7: f = 27190Hz BI: f = 28761Hz 



EMA: Full wavelength devices 

I2: = 28627Hz I1: f = 25935Hz 





EMA: Full wavelength devices 
I1: f = 25935Hz 

I2: = 28627Hz 
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Influence of elevated piezoceramic temperature 
I3 insert 

Time delay: 
1sec 

Time delay: 
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Influence of elevated piezoceramic temperature 
Duffing-like behaviour 

Resonant frequency shift Hysteretic width 
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Harmonic characterisation 
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Harmonic characterisation 
Resonant frequency shift 

0 1 2 3 4 50

100

200

300

400

Amplitude (microns)

Fr
eq

ue
nc

y 
Sh

ift

 

 
OT7: Up
OT7: Down
BI: Up
BI: Down
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I1: Down
I2: Up
I2: Down
I3: Up
I3: Down
I4: Up
I4: Down

  Resonant frequency 
shift at 2.5μm (Hz) 

Amplitude jumps 
Amplitude 

(μm) 
Voltage 
(Vrms) 

OT7 121 1.81 15 
BI 133 1.81 15 
I1 120 1.97 25 
I2 113 2.47 25 
I3 80 1.26 15 
I4 105 1.60 25 



Harmonic characterisation 
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  Hysteretic region at 2.5μm 
(Hz) 

OT7 12 
BI 8 
I1 6 
I2 10 
I3 2 
I4 8 



Power harmonic characterisation: Spectral response 
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Findings 
• Good correlation of resonant frequencies and longitudinal mode shapes 

between FEA and EMA. 
• Devices operating with elevated PZT temperatures exhibited increased levels 

of nonlinear behaviour; 
 Increase frequency shifts 
 Larger hysteric regions 
 Experimental method of significantly reduced thermal effect 

• Devices operating at elevated amplitudes of vibration exhibited increased 
levels of nonlinear behaviour; 
 Increase frequency shifts found in ½λ devices (lower Qm & higher strains) 
 Hysteretic regions increase with amplitude of vibration – Geometry appears not to influence this 

behaviour 

• Inserts containing blade tip in both (OT7) ½λ & (I1) full λ assemblies induce 
flexural motion that increases the spectral response; 
 Possibility of a “route to chaos”  
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