Low loss VHF and UHF Filters Based On Piezoelectrically- and Capacitively- Transduced Resonators

I-Tsang Wu, Julio Dewdney, and Jing Wang
RF-MEMS Transducers Group
Center for Wireless and Microwave Information Systems
University of South Florida

Introduction
Filters are an important technology enabler for numerous RF systems such as multifunction radar/communication system, portable handheld systems and radios.

Current dominant technology on the market (i.e., FBAR and SAW)
✓ Low insertion loss
✓ Low motional resistance
✓ Out of Band Rejection
✓ Off-Chip components
✓ Device size
✓ Low quality Factor
✓ Highly dependant on the mechanical properties of piezoelectric materials

Current receivers are based on SAW, BAW, FBAR and crystal quartz oscillators which present a bottleneck to miniaturization

Piezoelectrically-Transduced Resonators

A piezoelectrically transduced contour mode resonator consists of a piezoelectric layer sandwiched between two electrodes. When a RF signal is applied across the device it produces a mechanical motion in the piezoelectric layer.

Mechanically-coupled filter

\[f_{\text{resonance}} = \frac{1}{2L} \sqrt{\frac{E}{\rho}} \]

- \(E \) = Young’s module
- \(\rho \) = Material density
- \(L \) = Lateral dimensions

\[ZnO \]

Capacitively-Transduced Resonators

- CMOS compatible
- Built-in ON/OFF switch
- Higher Quality Factor
- Linear and Non-linear characteristic

\[\text{Transmitted (dB)} \]

<table>
<thead>
<tr>
<th>Frequency [MHz]</th>
<th>-130</th>
<th>-125</th>
<th>-120</th>
<th>-115</th>
<th>-110</th>
<th>-105</th>
<th>-100</th>
<th>-95</th>
<th>-90</th>
</tr>
</thead>
<tbody>
<tr>
<td>190.30</td>
<td>190.35</td>
<td>190.40</td>
<td>190.45</td>
<td>190.50</td>
<td>190.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Station, GSM,GPRS/EDGE, IF Filters

Conclusion
MEMS resonators and filters based on piezoelectric and capacitive resonators, with frequencies in the range of 100 MHz to 4.8 GHz have been successfully demonstrated. Devices with frequencies of 1.8 GHz, 2.4 GHz and 4.8 GHz have shown promising preliminary results compared to the current state of the art of technologies such as FBAR and SAW. Future work will be focused on increasing the quality factor of the fabricated devices.

Dual-Transduced Resonators

MEMS

Hybrid

✓ Inherited positive characteristics from both piezoelectric and capacitive resonators
✓ Multi-port design
✓ Asymmetric characteristic – reconfigurable
✓ Built-in faraday cage – low noise floor
✓ Lower motional impedance