Atomic Layer Deposition (ALD) Enabled RF MEMS Resonator by IC-Compatible Process
Mian Wei, Jing Wang
Department of Electrical Engineering
University of South Florida

Introduction
Capacitively-transduced MEMS resonators
- Higher Q-factor ($Q > 160,000$)
- High frequency ($f > 6$GHz)
- Radius controlled frequency
- Low temperature coefficient
× High impedance
× Low power handling

Motivation
In spite to high-Q, concerns about impedance matching and power handling of the micromechanical resonator reveal due to its orders of magnitude smaller dimensions comparing to its bulky counterparts, such as quartz crystals.

Impedance Matching Design
ALD Solid Gap vs. Air Gap
- Ease of the process
- Eliminate the particles
- Reduce characteristic impedance

$$R_x(\text{Air Gap}) = \frac{v_i}{i_o} = \frac{k_f}{\omega_0 V_p^2} e^{\varepsilon_\varepsilon_r d_2 A_2} Q(\text{Air Gap})$$

- d_2: disk-to-electrode gap
- ε_r: dielectric constant of the gap material
- A_2: overlap area

Advantages of ALD
- Ultra Thin (~nm)
- High-k Dielectric Material
- Atomically Controlled Thickness
- Low Temperature (~100 ºC)
- Conformal and Uniform

High Power Handling Design
$$P_{\text{max},A} = n \frac{\varepsilon_0}{Q_0} k_s \alpha^2 d_0^2$$
(n: number of resonators)
A $n \times n$ array has capability of increase the power handling by a factor of n^2, ideally.

Fabrication

- 3D Schematic View
- Process Flow
- Ni Electroplating Set-up

Applications

- Capacitively-transduced MEMS resonators
 - Higher Q-factor ($Q > 160,000$)
 - High frequency ($f > 6$GHz)
 - Radius controlled frequency
 - Low temperature coefficient
 × High impedance
 × Low power handling

- Resonator with $Q=12,000$ at 1.5GHz allows ultra low phase noise for oscillator in RF communication

- Two 4-disk array resonators coupled to realize a 2-resonator filter with an array-reduced impedance.