Measurement Techniques to Characterize an Ultrasonic or Megasonic Cleaning System

UIA Symposium, Orlando, FL

0NDA Corporation
www.ondacorp.com

April 23, 2013
Ultrasonic Cleaning Market

- 1930’s - RCA discovers ultrasound can clean
- 1950’s - commercialization of ultrasonic cleaner
- Cleaning Tank Install Base – “hundreds of thousands”
- Market Segments
 - Precision: semiconductors, disk drives, LEDs, flat panel displays, solar, mobile, or other electronic devices, medical.
 - General: jewelry, food, aerospace, automotive, other industrial components
- Search for a reliable measurement technique has existed for decades … and continues today.
Connecting Ultrasound with Cleaning

Process Variables
- Ultrasound
 - Gas concentration
 - Chemistry
 - Mechanical
 - Temperature
 - Flow rate
 - Process Time

Metrology Requirements
- Acoustic Uniformity
- Acoustic Amplitude
- Frequency

Yield Impact
- Particle Removal Efficiency
- Damage Control
Developing the Process Window

Cleaning Efficiency

Acoustic Parameter

Process Window

Acoustic pressure (kPa)

Level of Damage

Low

High

Cleaning Efficiency

PRE (%)
“The most important process parameter driving the development of megasonic technologies is the need to provide a more uniform acoustic field in which the substrate is processed.”

- Prosys Systems
What is the ideal metrology?

- Meaningful
- Able to detect changes
- Trust-worthy
- Tool Matching
- Simple to Use
- Fast
- Affordable
Scorecard

<table>
<thead>
<tr>
<th></th>
<th>Optical Defect Inspection</th>
<th>Aluminum Foil / Ceramic Ring</th>
<th>Sonoluminescence</th>
<th>Hydrophone</th>
<th>Hydrophone + Scanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation to Cleaning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repeatable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accurate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ease of Use</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Throughput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Compatible</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Optical Defect Inspection

Measurement Principle:
• Scattered light

Unit of Measure(s):
• Defect map
• # of defects
• Particle size
Scorecard

<table>
<thead>
<tr>
<th>Feature</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation to Cleaning</td>
<td>✓</td>
</tr>
<tr>
<td>Sensitive</td>
<td>✓</td>
</tr>
<tr>
<td>Repeatable</td>
<td>✓</td>
</tr>
<tr>
<td>Accurate</td>
<td>✓</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>-</td>
</tr>
<tr>
<td>Throughput</td>
<td>✓</td>
</tr>
<tr>
<td>Process Compatible</td>
<td>✓</td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td></td>
</tr>
</tbody>
</table>
Aluminum Foil Test

Measurement Principle:
• Erosion of Aluminum

Unit of Measure(s):
• Visual erosion pattern
Ceramic Ring Test

Measurement Principle:
• Erosion of graphite on ceramic ring

Unit of Measure(s):
• Visual inspection of color change
Scorecard

<table>
<thead>
<tr>
<th></th>
<th>Optical Defect Inspection</th>
<th>Aluminum Foil / Ceramic Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation to Cleaning</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Sensitive</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Repeatable</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Accurate</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Throughput</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Process Compatible</td>
<td>✓</td>
<td>-</td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Sonoluminescence

Measurement Principle:
• Detecting photons as byproduct of cavitation

Unit of Measure(s):
• Photon count / seconds

Scorecard

<table>
<thead>
<tr>
<th></th>
<th>Optical Defect Inspection</th>
<th>Aluminum Foil / Ceramic Ring</th>
<th>Sonoluminescence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation to Cleaning</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sensitive</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Repeatable</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Accurate</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Throughput</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Process Compatible</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
</tr>
</tbody>
</table>

ONDA Confidential
Hydrophone Measurement

Measurement Principle:
• Piezoelectric transducer converts sound pressure into electrical signal

Unit of Measure(s):
• Voltage (time)
Cleaning Tank Probes
Hydrophone Measurement

[Not to scale]
Acoustic Maps from Hydrophones

Comparing Two Cleaning Systems, $f = 850 \text{ kHz}$

System #1
- Mean Pressure: 174 kPa
- Uniformity: 171%

System #2
- Mean Pressure: 184 kPa
- Uniformity: 23%
Scorecard

<table>
<thead>
<tr>
<th></th>
<th>Optical Defect Inspection</th>
<th>Aluminum Foil / Ceramic Ring</th>
<th>Sonoluminescence</th>
<th>Hydrophone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation to Cleaning</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Sensitive</td>
<td>✓</td>
<td>-</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Repeatable</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Accurate</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Throughput</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Process Compatible</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Hydrophone Measurement

Ultrasonic or Megasonic Cleaning Tank

Cleaning Tank Hydrophone

HCT

MCT Meter

Computer

Scanning

[Not to scale]
Automating Hydrophone Measurement

Cleaning Tank Hydrophone

Ultrasonic or Megasonic Cleaning Tank

HCT

Scanning

MCT Meter

Computer

Software

[Not to scale]
Automated Scanning for Precision Cleaning

HCT Hydrophone

CTS Scanner (under development)
CTS Scanner

- X, Y, Z scanner mounted onto wafer carrier
- Scanner compatible with HCT hydrophone and MCT meter
- Full software control
- Designed to be able to measure “loaded” systems
A short demonstration...
Mapping Acoustic Distribution

Uniformity = 55%

Uniformity = 68%

Uniformity = 34%

Batch System

f = 40 kHz
Scorecard

<table>
<thead>
<tr>
<th></th>
<th>Optical Defect Inspection</th>
<th>Aluminum Foil / Ceramic Ring</th>
<th>Sonoluminescence</th>
<th>Hydrophone</th>
<th>Hydrophone + Scanner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation to Cleaning</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Sensitive</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Repeatable</td>
<td>√</td>
<td>-</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Accurate</td>
<td>√</td>
<td>Red</td>
<td>-</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Ease of Use</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Throughput</td>
<td>√</td>
<td>Red</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Process Compatible</td>
<td>√</td>
<td>Red</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Cost of Ownership</td>
<td>Red</td>
<td>√</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Closing Remarks

• Connection between ultrasound and cleaning performance continues to be explored

• Complexity in wet clean processes requires acoustic control to maximize cleaning efficiency and limit damage

• Various measurement techniques available; still, the need for standardization exists

• Hydrophone measurements with automated scanning offers a quantitative and systematic approach
BACKUP
Megasonic Sweeping (Crest Subsidiary)

Hydrophone Results

Defect Maps
Sonoluminescence

Physics Today: Mar. 12, 2012, Seth Puttermann UCLA
Acoustic Pressure Uniformity

f = 970 kHz
HCT Accessories

- HCT Hydrophone
- MCT Acoustic Meter
- Data Logger (Redfish)
- Two 9 V Batteries
- Calibration Certificate
Wireless Data Logger

- Apple iPad with Redfish App
- Data Logger (Redfish)
- MCT Acoustic Meter
- HCT Hydrophone
Healthmark Sonocheck

Neat, but not quantitative…
Good Correlation:
AI Foil Erosion and HCT Acoustic Plot
Comparing Various Configurations

40 kHz Batch System

(1) Tank Empty

(2) Empty Cassette

(3) Cassette with 14 Disks

% Std Dev = 43.5%

% Std Dev = 55.0%

% Std Dev = 46.1%

\[\Sigma P_{rms} (2) = 0.7 \times \Sigma P_{rms} (1) \]

\[\Sigma P_{rms} (3) = 0.3 \times \Sigma P_{rms} (1) \]