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  Langevin Type “Sandwich” Transducers Used in Wire Bonding 
 Motivation for the Research 
 Pros and Cons of Common Piezo Stack Preload Bolt Configurations 
 Common Transducer Failure Modes Caused by Preload Bolts 
 Selection of Bolt Material Based on Strength and E-Mech Coupling 
 Sizing of Preload Bolts Based on Prestress Uniformity and Yield Stress 
 Determining Minimum Thread Engagement to the Mating Horn 
 First Pass (Non FEA) Prediction of Parasitic Bolt Resonances 
 Conclusions 
 Questions? 
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TRANSDUCERS FOR WIRE BONDING 
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 Selection of the preload bolt is often an afterthought in the design of 

 Langevin type “sandwich” transducers 
 

 Even within transducer design companies (such as K&S), there is no 
 consistent methodology for design or configuration of preload bolts 
 

 Quite often the preload bolt is the root cause of failure for power 
 ultrasonic transducers (yield/breakage, preload loss, parasitic mode…) 
 

 Main role of preload bolt is to provide a “prestress” in the piezo stack to 
 prevent interface “gapping” or tension in glue joints (delamination) 
 

 Preload bolts are an integral part of the highly tuned dynamic system 
 

 Resulting parasitic resonances in preload bolts such as bending or 
 longitudinal modes are often difficult to predict and control 
 

 Some rule-of-thumb design and configuration guidelines for preload 
 bolts are needed 
 

 
 

MOTIVATION FOR THE RESEARCH 
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COMMON PRELOAD BOLT CONFIG’S 
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COMMON PRELOAD BOLT CONFIG’S 
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COMMON PRELOAD BOLT CONFIG’S 
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COMMON PRELOAD BOLT CONFIG’S 
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COMMON PRELOAD BOLT CONFIG’S 
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Known good transducer (operating mode) 
 No nearby parasitic modes seen 
 Stable, low impedance 
 Boundary conditions on screw modeled with full contact area under head 
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Example:  Transducer – Preload Screw Resonance Analysis 

FAILURE MODES OF PRELOAD BOLTS 
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 Low preload due to screw yielding  (modeled as reduced 

contact area with screw) 
 Nearby parasitic mode 
 Unstable, high impedance 

 

Play 
Video 

 

FEA Model Animation 
(Operating Mode) 





42th UIA Symposium, Orlando, FL, USA 22-Apr-13  -17- 

Bad Local Parasitic 
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Example:  Transducer – Preload Screw Resonance Analysis 
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Example:  Transducer – Preload Screw Resonance Analysis 
 Closer look via section views:  What is the motion of the screw?  
 The screw resonance mode here may be described as “slinky-like” (i.e., longitudinal mode) 
 Screw mode has “one end” out of phase with the natural driver motion 
 This situation has the potential to exert very high loads at preload screw threads 
 Alternate axis-symmetric FEA models would have predicted this slinky mode, but will have missed 

all the bending modes in screw (common mistake) 

Screw Resonance 
Mode 

Transducer Operating Mode 

Node in Screw at Anti-
Node of Driver (Bad) 

 

FAILURE MODES OF PRELOAD BOLTS 

Node in Piezo Stack 
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FAILURE MODES OF PRELOAD BOLTS 
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  Optimizing for Strength (Always Use Yield Stress, Not Tensile Strength!) 
 Higher strength materials allow the smallest diameter screw, which maximizes volume 

of piezo material for a given stack diameter (lower impedance, higher e-mech coupling) 
 Higher strength materials allow for less thread engagement, which minimizes frictional 

losses (threads can be lossey with higher impedance) 
 Optimizing for Transducer Electromechanical Coupling Factor (k) 
 Coupling k is proportional to the transducer “phase window” difference of the 

antiresonance (fa) and resonance (fr) from Bode plot (i.e. k ∝(fa-fr)/fr). 
 The phase window or coupling (k) is maximized when the bolt stiffness is minimized 

relative to piezo stack (i.e., least amount of stack energy absorbed by preload screw) 
 For example, if preload bolt stiffness is the same as stack stiffness, then (k) will be 

reduced by at least 50% from the max possible k33 for the piezo material 
 The best bolt material is the one with the highest yield strength (σy) and the lowest 

stiffness or elastic modulus (E), i.e., maximize the ratio σy /E 
  Highest yield stress material allows the use of the smallest diameter screw (less stiff) 
  Lowest modulus results in the lowest stiffness for a given diameter 
  For example, beryllium copper (BeCu, C17300) screws are better than alloy steel screws for 

maximizing k (i.e., 160/18.5 = 9 versus 170/30 = 6) 
 Coupling k is maximized when stress in piezo stack is most uniform 

  Custom screws can be advantageous with necking down in unthreaded areas (reduces 
stiffness) and flared heads for more uniform stress in piezos (especially with end masses that 
have poor length/diameter (i.e., L/D) ratios in an attempt to maximize piezo volume) 

 Wave speed (c=sqrt(E/ρ)) is also a consideration for screw design (phasing, node 
placement, etc.).  Steel, Ti and Al are about the same, where as BeCu is 20% less 

 
 

 

SELECTION OF BOLT MATERIAL 
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 Uniformity of piezo stress is very important when sizing preload bolts 

 
 Nonunifom piezo prestress ultimately results in two simultaneous problems 
 Some volume of the piezo material is insufficiently loaded (i.e., outer diameter 

of stack) resulting in either tension/delamination in glue joints (for glued stacks) 
or dynamic gapping at interfaces for dry stacks 
 Some volume of the piezo material will be overloaded (i.e., inner diameter of 

stack) resulting in severe depoling (i.e., little or no output) 
 

 For example, with near uniform prestress in piezo stack (i.e., max/min 
stress ratio ≈ 1.0) PZT8 materials can withstand 90 MPa prestress 
 However, with max/min stress ratios in the 1.5-3 range, prestress for PZT8 

materials should be reduced to the 30-60 MPa range 
 
 For sizing common alloy steel bolts under static prestress, the catalog 

recommended seating stress of 120 ksi (e.g. Unbrako) is a good guideline 
 Allows sufficient margin for torquing & dynamic loading up to 170 ksi yield 
 Dynamic loading in bolt typically <10% of prestress levels without resonances 
 Use yield stress, not tensile strength when sizing bolts (yield = preload loss) 
 Can use 150 ksi for more aggressive designs with a compression load fixture 

 

SIZING OF PRELOAD BOLTS 
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seating bolt
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Horn

Preload Bolt

Thread

Goal: Bolt Breaks 
Before Thread 

Strips

 -22- 

PRELOAD BOLT THREAD ENGAGEMENT 
 
Goal: To ensure the length of thread engagement is sufficient to carry the full load 
    necessary to yield the screw without the internal or external threads stripping* 
 
 Tensile Stressed Area of Screw: 
 
 Shear Area of External Thread per Unit Length: 

 
 

 Shear Area of Internal Thread per Unit Length: 
 
 where D = major diameter, n = number of threads per inch, Dm = max minor diameter of internal thread,  
      Dp = max pitch diameter of internal thread, Pd = min pitch diameter of external thread,  
     and DM = min major diameter of external thread 
 
 
 To Determine Minimum Thread Engagement Length, EL: 

 
 A. For same materials for both internal and external threads use: 

 
 B. For different materials for internal and external threads, first determine Relative Strength (R),  

 
        where Se = yield strength of external thread material, Si = yield strength of internal thread material 
 
        if R ≤ 1, use the same equation as A: 
 
        if R > 1, use: 
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*Ref. Walsh or FED-STD-H28/2B 

Common design mistake is to 
use tensile strength for 

determining minimum thread 
engagement. 

 
Failure for a transducer must be 

defined by the yielding of threads 
where preload is lost. 
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D n Ase Asi R Ats EL EL(D)
#2 0.086 56 0.109 0.168 3.683 0.004 0.250 2.9
#4 0.112 40 0.147 0.228 3.659 0.006 0.299 2.7
#6 0.138 32 0.190 0.289 3.724 0.009 0.357 2.6
#8 0.164 32 0.239 0.344 3.924 0.014 0.461 2.8
#10 0.19 24 0.275 0.411 3.788 0.018 0.483 2.5
1/4" 0.25 20 0.383 0.552 3.932 0.032 0.653 2.6
5/16" 0.3125 18 0.489 0.696 3.978 0.052 0.853 2.7
3/8" 0.375 16 0.598 0.845 4.013 0.077 1.040 2.8

Avg 2.7

 -23- 

PRELOAD BOLT THREAD ENGAGEMENT 
 
For example, 
    with Se = 170 ksi yield tensile strength for alloy steel screw (class 3A), and Si = 30 ksi yield tensile strength 
for annealed 316 stainless steel horn (class 2B), the thread engagement of 8 common UNC screws are: 
 
 
 
 
 

 
 

 

YTS = Yield Stress 
UTS = Tensile Strength 

Tensile strength for annealed 316 
stainless is 80 ksi, but yield 

strength is only 30 ksi.  Elongation 
at failure is a whopping 40%, so if 

tensile strength is used for the 
thread engagement length 

the preload will be long gone 
before the material can work 

hardened 

Plot of Tensile Stress in 
Bolt vs Minimum Thread 

Engagement for: 
316 Stainless Steel 
(annealed), 7075-T6 
Aluminum Alloy, and 

Titanium 6-4 (annealed) 
 

(Class 3A Bolt Threaded 
in Class 2B Horn) 
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PREDICTING PARASITIC BOLT RESONANCES 
One-Dimensional Piezo Stack Model for Predicting 

Longitudinal Mode Screw Resonances  

E: Modulus of Elasticity 
ρ: Mass Density 
A: Area or Thread Pitch Area 
c: Bar Velocity  
l: Length 
f: Force 
u: Displacement 
ω: Angular Frequency 
t: Time     m: Mass (Screw head) 

1-D Wave Equation 
2 2

2 2 2
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∂ ∂
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Solution to Forced Response 
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Boundary Conditions (Case , Screw Attached to Ends of Stack) 
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fs = - ff1 
ff1 = ff2 
ff2 = fc 
 f0 = fc - fe1 
fe1 = fe2 
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0f
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ue2(l.e2) =  us(0) 
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Use Short Circuit Ec 
for Resonance and 
Open Circuit Ec for 

Antiresonance 

Add another rod 
segment here for 
shanked screws 
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Boundary Conditions Assembled in Matrix Q(ω) for Case  to solve for constants C in Mathcad ([Q]*[C] = [B]) 

Forcing Function Matrix 
Invert Q to Solve for C 

Assemble Equations for Displacement Mode Shapes Using Constants 

Compute Transfer Functions Versus Frequency 

PREDICTING PARASITIC BOLT RESONANCES 

B f0( )

0
0
0
0
0
0
0
f0

0
0
0
0







































:=

uf1 x ω, f0, ( ) C ω f0, ( )1 cos βf1 ω( ) x( )⋅ C ω f0, ( )2 sin βf1 ω( ) x⋅( )⋅+:= ue1 x ω, f0, ( ) C ω f0, ( )7 cos βe1 ω( ) x( )⋅ C ω f0, ( )8 sin βe1 ω( ) x⋅( )⋅+:=

uf2 x ω, f0, ( ) C ω f0, ( )3 cos βf2 ω( ) x( )⋅ C ω f0, ( )4 sin βf2 ω( ) x⋅( )⋅+:= ue2 x ω, f0, ( ) C ω f0, ( )9 cos βe2 ω( ) x( )⋅ C ω f0, ( )10 sin βe2 ω( ) x⋅( )⋅+:=

uc x ω, f0, ( ) C ω f0, ( )5 cos βc ω( ) x( )⋅ C ω f0, ( )6 sin βc ω( ) x⋅( )⋅+:= us x ω, f0, ( ) C ω f0, ( )11 cos βs ω( ) x( )⋅ C ω f0, ( )12 sin βs ω( ) x⋅( )⋅+:=

Tf1 ω( )
uf1 0 ω, f0, ( )

f0
:= Tc ω( )

uc 0 ω, f0, ( )
f0

:= Te1 ω( )
ue1 0 ω, f0, ( )

f0
:=

Tf2 ω( )
uf2 0 ω, f0, ( )

f0
:= Ts ω( )

us ls ω, f0, ( )
f0

:= Te2 ω( )
ue2 0 ω, f0, ( )

f0
:=

C ω f0, ( ) Q ω( )
1−

B f0( )⋅:=

fm m fm 

( )
2

2m s s
kf u l k

k mω
 

= − − 

k 

fs 

fe2 

For Spring-Mass Boundary Condition 

Q ω( )

1−

0

cos βf1 ω( ) lf1⋅( )
0

0

0

0

0

0

Ef1− Af1⋅ βf1 ω( )⋅ sin βf1 ω( ) lf1⋅( )⋅

0

0

0
0

sin βf1 ω( ) lf1⋅( )
0

0

0

Ef1 Af1⋅ βf1 ω( )⋅

0

0

Ef1 Af1⋅ βf1 ω( )⋅ cos βf1 ω( ) lf1⋅( )⋅

0

0

0
0

1−

cos βf2 ω( ) lf2⋅( )
0

0

0

0

0

0

Ef2− Af2⋅ βf2 ω( )⋅ sin βf2 ω( ) lf2⋅( )⋅

0

0
0

0

sin βf2 ω( ) lf2⋅( )
0

0

0

0

0

Ef2− Af2⋅ βf2 ω( )⋅

Ef2 Af2⋅ βf2 ω( )⋅ cos βf2 ω( ) lf2⋅( )⋅

0

0
0

0

1−

cos βc ω( ) lc⋅( )
0

0

Ec− Ac⋅ βc ω( )⋅ sin βc ω( ) lc⋅( )⋅

0

0

0

0

0
0

0

0

sin βc ω( ) lc⋅( )
0

0

Ec Ac⋅ βc ω( )⋅ cos βc ω( ) lc⋅( )⋅

0

0

Ec− Ac⋅ βc ω( )⋅

0

0
0

0

0

1−

cos βe1 ω( ) le1⋅( )
0

0

0

0

0

Ee1− Ae1⋅ βe1 ω( )⋅ sin βe1 ω( ) le1⋅( )⋅

0
0

0

0

0

sin βe1 ω( ) le1⋅( )
0

Ee1− Ae1⋅ βe1 ω( )⋅

0

0

0

Ee1 Ae1⋅ βe1 ω( )⋅ cos βe1 ω( ) le1⋅( )⋅

0
cos βe2 ω( ) le2⋅( )−

0

0

0

1−

0

0

Ee2− Ae2⋅ βe2 ω( )⋅ sin βe2 ω( ) le2⋅( )⋅

0

0

0

0
sin βe2 ω( ) le2⋅( )−

0

0

0

0

0

0

Ee2 Ae2⋅ βe2 ω( )⋅ cos βe2 ω( ) le2⋅( )⋅

0

0

Ee2− Ae2⋅ βe2 ω( )⋅

1
cos βs ω( ) ls⋅( )

0

0

0

0

0

0

M1 ω( )

0

0

0

0
sin βs ω( ) ls⋅( )

0

0

0

0

Es As⋅ βs ω( )⋅

0

M2 ω( )

0

0

0















































:=

M1 ω( ) Es− As⋅ βs ω( )⋅ sin βs ω( ) ls⋅( )⋅ m ω2
⋅ cos βs ω( ) ls⋅( )⋅−:=

M2 ω( ) Es As⋅ βs ω( )⋅ cos βs ω( ) ls⋅( )⋅ m ω2
⋅ sin βs ω( ) ls⋅( )⋅−:=

M1 ω( ) M2 ω( ), 
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5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
1 10 12−

×

1 10 10−
×

1 10 8−
×

1 10 6−
×

1 10 4−
×

0.01

Transfer Function Versus Frequency

Frequency (kHz)

D
isp

la
ce

m
en

t/f
0

Tf1 ωi( )
Tf2 ωi( )
Tc ωi( )
Te1 ωi( )
Te2 ωi( )
Ts ωi( )

ωi

2 π⋅
1

1000
⋅

0 0.21 0.42 0.63 0.84 1.05 1.26 1.47 1.68 1.89 2.1
2− 10 3−

×

0

2 10 3−
×

4 10 3−
×

6 10 3−
×

Displacement Vs. Position

Position (in)

D
isp

la
ce

m
en

t (
in

)

uf1 xf1i W, f0, ( )
uf2 xf2i W, f0, ( )
uc xci W, f0, ( )
ue1 xe1i W, f0, ( )
ue2 xe2i W, f0, ( )
us xsi W, f0, ( )

xf1i lf1 xf2i+( ), lf1 lf2+ xci+( ), lf1 lf2+ lc+ xe1i+( ), lf1 lf2+ lc+ le1+ xe2i+( ), xsi, 

0 0.21 0.42 0.63 0.84 1.05 1.26 1.47 1.68 1.89 2.1
6− 10 4−

×

4− 10 4−
×

2− 10 4−
×

0

2 10 4−
×

4 10 4−
×

6 10 4−
×

Displacement Vs. Position

Position (in)

D
isp

la
ce

m
en

t (
in

)

uf1 xf1i W, f0, ( )
uf2 xf2i W, f0, ( )
uc xci W, f0, ( )
ue1 xe1i W, f0, ( )
ue2 xe2i W, f0, ( )
us xsi W, f0, ( )

xf1i lf1 xf2i+( ), lf1 lf2+ xci+( ), lf1 lf2+ lc+ xe1i+( ), lf1 lf2+ lc+ le1+ xe2i+( ), xsi, 
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Screw 
Resonance 
(46.4kHz) 

Operating 
Resonance 
(40.2kHz) 

Operating 
Resonance 
(40.2kHz) 

Screw 
Resonance 
(46.4kHz) 

PREDICTING PARASITIC BOLT RESONANCES 

Large Screw 
Displacement 

duE
dx

σ =

High Dynamic Stress in 
Screw.  Failure Eminent 

Due to Yielding 
 
 

Stress ( Increases with Slope) 

Stack 

Stack 

Screw 

Good guideline is 
>10% frequency 
separation for dry 
stacks and >20% 

frequency separation 
for glued stacks 

40kHz Half Wave 
Langevin Stack 

Example 
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Ef, If, ρf, Af
Screw Thread

0 le

Ee, Ie, ρe, Ae
Screw Shank

lf0

 -27- 

One-Dimensional Model for Predicting Bending Mode Screw Resonances  

E: Modulus of Elasticity 
ρ: Mass Density 
A: Area or Thread Pitch Area 
I: Inertia 
a: Beam Constant  
l: Length 
V: Shear 
M: Moment 
y: Displacement 
ω: Angular Frequency 
t: Time 

1-D Flexural Wave Equation 
4 2

4 2 2

1y u
x c t

∂ ∂
=

∂ ∂

Solution to Forced Response 

( ) ( )0 expf t f i tω=

( ) ( ) ( ), expY x t y x i tω=

( ) ( ) ( ) ( ) ( )1 2 3 4sin cos sinh coshy x C x C x C x C xβ β β β= + + +

Common Boundary Conditions ( & ) 

a
ωβ =

x
( )y x

EIa
Aρ

=

PREDICTING PARASITIC BOLT RESONANCES 

Assume Solution 

( )0 0fy = ( ) 0e ey l =

0

0f

x

dy
dx =

= 0
e

e

x l

dy
dx =

=

( )0 0fy =

Displacement 

Slope 

Displacement ( ) 0e ey l =
2

2
0

0f

x

d y
dx

=

=
2

2 0
e

e

x l

d y
dx

=

=Moment 

( )f t

eVeVfV fV

eMfM

fM eM

Slope Continuity 
Shear Force Continuity Moment Continuity 

0f

f e

xx l

dy dy
dx dx ==

= 33

0 3 3
0 f

fe
e e f f

x x l

d yd yf E I E I
dx dx

= =

= −
2 2

2 2
0f

f e
f f e e

xx l

d y d yE I E I
dx dx

==

=

    

    

0 e ff V V= − f eM M=

Shank 

Thread 
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Boundary Conditions Assembled in Matrix Q(ω) for Case  to solve for constants C in Mathcad ([Q]*[C] = [B]) 

Forcing Function Matrix 
Invert Q to Solve for C 

Assemble Equations for Displacement Mode Shapes Using Constants 

Compute Transfer Functions Versus Frequency 

PREDICTING PARASITIC BOLT RESONANCES 

Q ω( )

0

sin βf ω( ) lf⋅( )
0

βf ω( )

0

βf ω( ) cos βf ω( ) lf⋅( )

Ef If⋅ βf ω( )3
⋅ cos βf ω( ) lf⋅( )⋅

Ef− If⋅ βf ω( )2
⋅ sin βf ω( ) lf⋅( )⋅

1

cos βf ω( ) lf⋅( )
0

0

0

βf ω( )− sin βf ω( ) lf⋅( )

Ef− If⋅ βf ω( )3
⋅ sin βf ω( ) lf⋅( )⋅

Ef− If⋅ βf ω( )2
⋅ cos βf ω( ) lf⋅( )⋅

0

sinh βf ω( ) lf⋅( )
0

βf ω( )

0

βf ω( ) cosh βf ω( ) lf⋅( )

Ef− If⋅ βf ω( )3
⋅ cosh βf ω( ) lf⋅( )⋅

Ef If⋅ βf ω( )2
⋅ sinh βf ω( ) lf⋅( )⋅

1

cosh βf ω( ) lf⋅( )
0

0

0

βf ω( ) sinh βf ω( ) lf⋅( )

Ef− If⋅ βf ω( )3
⋅ sinh βf ω( ) lf⋅( )⋅

Ef If⋅ βf ω( )2
⋅ cosh βf ω( ) lf⋅( )⋅

0

0

sin βe ω( ) le⋅( )
0

βe ω( ) cos βe ω( ) le⋅( )
βe ω( )−

Ee− Ie⋅ βe ω( )3
⋅

0

0

1−

cos βe ω( ) le⋅( )
0

βe ω( )− sin βe ω( ) le⋅( )
0

0

Ee Ie⋅ βe ω( )2
⋅

0

0

sinh βe ω( ) le⋅( )
0

βe ω( ) cosh βe ω( ) le⋅( )
βe ω( )−

Ee Ie⋅ βe ω( )3
⋅

0

0

1−

cosh βe ω( ) le⋅( )
0

βe ω( ) sinh βe ω( ) le⋅( )
0

0

Ee− Ie⋅ βe ω( )2
⋅





























:=

b f0( )

0

0

0

0

0

0

f0

0

























:=

C ω f0, ( ) Q ω( )
1−

B f0( )⋅:=

yf x ω, f0, ( ) c ω f0, ( )1 sin βf ω( ) x⋅( )⋅ c ω f0, ( )2 cos βf ω( ) x⋅( )⋅+ c ω f0, ( )3 sinh βf ω( ) x( )⋅+ c ω f0, ( )4 cosh βf ω( ) x⋅( )⋅+:=

ye x ω, f0, ( ) c ω f0, ( )5 sin βe ω( ) x⋅( )⋅ c ω f0, ( )6 cos βe ω( ) x⋅( )⋅+ c ω f0, ( )7 sinh βe ω( ) x( )⋅+ c ω f0, ( )8 cosh βe ω( ) x⋅( )⋅+:=

Te ω( )
ye 0 ω, f0, ( )

f0
:=Tf ω( )

yf lf ω, f0, ( )
f0

:=

Warning!: Solution above ignores shear deformations 
and rotary inertia effects making it less accurate for 
higher order modes.  See Graff reference for solution to 
equations below to include these effects: 
 
 
 

( )
2 2 2 2

2 2 2 2, ,y y yGA A q x t GA EI I
x x dt x dx dt
ϕ ϕ ϕκ ρ κ ϕ ρ

 ∂ ∂ ∂ ∂ ∂ ∂ − + = − + =   ∂ ∂ ∂  
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( )

0 0.21 0.42 0.63 0.84 1.05 1.26 1.47 1.68 1.89 2.1
0.008−

0.0064−
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0.0016−

0
0.0016
0.0032
0.0048
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0.008

Displacement Versus Position
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D
is
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t (
in

)

y f xfi ω, f0,  ( )
ye xei ω, f0,  ( )

xfi lf xei+, 
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D
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0

Tf ωi( )
Te ωi( )

ωi

2 π⋅

1

1000
⋅

Bending Mode 
Screw Resonance 

(41.0kHz) 

Operating 
Resonance 
(40.2kHz) 
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PREDICTING PARASITIC BOLT RESONANCES 

Vf x ω, f0, ( ) Ef− If⋅ 3x
yf x ω, f0, ( )d

d

3
⋅:= Ve x ω, f0, ( ) Ee− Ie⋅ 3x

ye x ω, f0, ( )d

d

3
⋅:=

  

  

 

σf x ω, f0, ( ) Mf x ω, f0, ( )
df

2 If⋅
⋅:= σe x ω, f0, ( ) Me x ω, f0, ( )

de

2 Ie⋅
⋅:=

Shear Force 

Stress 

Mf x ω, f0, ( ) Ef− If⋅ 2x
yf x ω, f0, ( )d

d

2
⋅:= Me x ω, f0, ( ) Ee− Ie⋅ 2x

ye x ω, f0, ( )d

d

2
⋅:=

Moment 

Mode Shape 
of Screw 
(41.0kHz) 

Thread 

Shank 

Good guideline is 
>10% frequency 
separation for dry 
stacks and >20% 

frequency separation 
for glued stacks 

40kHz Half Wave 
Langevin Stack 

Example 
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End 
Mass 

Operating Mode 
40.3kHz (1D 40.2kHz) 

PZT Stack Preload 
Bolt in 

Clearance 
Hole 

Screw Bending Mode 
38.7kHz (1D 41.0kHz) 

Screw Longitudinal Mode 
43.9kHz (1D 46.4kHz) 

PREDICTING PARASITIC BOLT RESONANCES 
 Comparison of 1-D 40kHz Langevin Solution to FEA Model 
Front 
Mass 

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2

N
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m
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ed
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is
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ac

em
en

t

Position Along Driver Axis, in

Operating Mode

Screw Bending

Screw Axial

FEA Predicted Mode Shapes 
(Nearly identical to 1D Model 

FEA Model 
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CONCLUSIONS  
  

  The preload screw configuration and design requires a detailed trade-off analysis 
 Need to optimize stress uniformity, e-mech coupling and stack symmetry, while 

minimizing interaction of parasitic screw modes 
  Screw resonances can manifest as both longitudinal and bending modes 

 Actual boundary conditions can be tricky to model in FEA making prediction difficult 
 Commonly used axis-symmetric FEA models can not predict screw bending modes 
 Screw boundary conditions can especially vary with glued piezo stack designs, so 

greater separation with parasitic screw modes is required compared to dry stacks 
 Uncontrolled screw resonances often lead to preload loss and screw failure, but at the 

very least they can negatively effect transducer performance 
 The best bolt material is the one with the highest yield strength (σy) and the 

lowest stiffness or elastic modulus (E), i.e., maximize the ratio σy /E 
 The phase window or coupling (k) is maximized when the bolt stiffness is minimized 

relative to piezo stack 
  The sizing of preload screws and determination of minimum thread engagement 

should always be done based on yield strength (yielding = preload loss) 
 Adequate thread engagement length based on yield stress is critical for both the 

preload screw and internal threads of horn to prevent preload loss under dynamics 
 Uniformity of prestress effects both bolt sizing and e-mech coupling 

  Simple 1-D wave equation models can be a fast and effective way to identify 
locations of parasitic screw resonance for many piezo stack configurations 
 Use 10% frequency separation for dry stacks and 20% for glued stacks 
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QUESTIONS? 
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